Created
February 13, 2022 10:15
-
-
Save googya/61d38f73b41e5b5e88472b60f4b7250e to your computer and use it in GitHub Desktop.
Programming Machine Learnng: Pizza predict
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Mix.install([ | |
{:nx, "~> 0.1.0"}, | |
]) | |
input = """ | |
13 26 9 44 | |
2 14 6 23 | |
14 20 3 28 | |
23 25 9 60 | |
13 24 8 42 | |
1 12 2 5 | |
18 23 9 51 | |
10 18 10 44 | |
26 24 3 42 | |
3 14 1 9 | |
3 12 3 14 | |
21 27 5 43 | |
7 17 3 22 | |
22 21 1 34 | |
2 12 4 16 | |
27 26 2 46 | |
6 15 4 26 | |
10 21 7 33 | |
18 18 3 29 | |
15 26 8 43 | |
9 20 6 37 | |
26 25 9 62 | |
8 21 10 47 | |
15 22 7 38 | |
10 20 2 22 | |
21 21 1 29 | |
5 12 7 34 | |
6 14 9 38 | |
13 19 4 30 | |
13 20 3 28 | |
""" | |
data = input | |
|> String.split("\n", trim: true) | |
|> Enum.map(fn s -> String.split(s, " ", trim: true) |> Enum.map(&String.to_integer/1) end) | |
tensor = Nx.tensor(data, names: [:y, :x]) | |
x = tensor[x: 0..2] | |
{ b, n } = x.shape | |
y = tensor[x: 3] |> Nx.reshape({b, 1}) | |
w = Nx.reshape(Nx.tensor(List.duplicate(0, n)), {n, 1}) | |
gen = List.duplicate(1, b) |> Nx.tensor() |> Nx.reshape({b, 1}) | |
new_x = Nx.concatenate([gen, x], axis: 1) | |
defmodule Hyperspace do | |
import Nx.Defn | |
defn predict(x, w) do | |
Nx.dot(x, w) | |
end | |
defn loss(x, y, w) do | |
(predict(x, w) - y) | |
|> Nx.power(2) | |
|> Nx.mean() | |
end | |
defn gradient(x, y, w, lr) do | |
y_hat = predict(x, w) - y | |
new_w = Nx.transpose(x) | |
|> Nx.dot(y_hat) | |
|> Nx.multiply(2) | |
|> Nx.divide(elem(x.shape, 0)) | |
w - new_w * lr | |
end | |
def train(x, y, iteration, lr) do | |
n = elem(x.shape, 1) | |
w = Nx.reshape(Nx.tensor(List.duplicate(0, n)), {n , 1}) | |
for i <- 1..iteration, reduce: w do | |
old_w -> | |
gradient(x, y, old_w, lr) | |
end | |
end | |
end | |
w = Hyperspace.train(new_x, y, 100000, 0.001) | |
extract = fn e -> e |> Nx.to_flat_list() |> Enum.join(",") end | |
IO.puts("\n Weights #{extract.(w)}") | |
IO.puts("\n A few prediction:") | |
for i <- 0..4 do | |
t = Hyperspace.predict(new_x[i], w) | |
IO.puts("X[#{i}] -> #{extract.(t)} (label: #{extract.(y[i])}) ") | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment