Skip to content

Instantly share code, notes, and snippets.

@gallais
Created September 7, 2015 18:53
Show Gist options
  • Save gallais/303cfcfe053fbc63eb61 to your computer and use it in GitHub Desktop.
Save gallais/303cfcfe053fbc63eb61 to your computer and use it in GitHub Desktop.
Interpreting the untyped lambda calculus in Agda
{-# OPTIONS --copatterns #-}
module UntypedLambda where
open import Size
open import Function
mutual
data Delay (A : Set) (i : Size) : Set where
now : A → Delay A i
later : ∞Delay A i → Delay A i
record ∞Delay (A : Set) (i : Size) : Set where
coinductive
constructor [_]
field
force : {j : Size< i} → Delay A j
open import Data.Nat
open import Data.Fin
data Expr (n : ℕ) : Set where
Var : Fin n → Expr n
App : Expr n → Expr n → Expr n
Lam : Expr (suc n) → Expr n
renm : {m n : ℕ} (t : Expr n) (ρ : Fin n → Fin m) → Expr m
renm (Var x) ρ = Var (ρ x)
renm (App t u) ρ = App (renm t ρ) (renm u ρ)
renm (Lam t) ρ = Lam $ renm t $ λ k → case k of λ
{ zero → zero
; (suc l) → suc (ρ l)
}
subst : {m n : ℕ} (t : Expr n) (ρ : Fin n → Expr m) → Expr m
subst (Var x) ρ = ρ x
subst (App t u) ρ = App (subst t ρ) (subst u ρ)
subst (Lam t) ρ = Lam $ subst t $ λ k → case k of λ
{ zero → Var zero
; (suc l) → renm (ρ l) suc
}
_⟨_⟩ : {m : ℕ} (t : Expr (suc m)) (u : Expr m) → Expr m
t ⟨ u ⟩ = subst t $ λ k → case k of λ
{ zero → u
; (suc l) → Var l
}
open import Data.Maybe as Maybe
redex : {n : ℕ} (t : Expr n) → Maybe (Expr n)
redex (Var x) = nothing
redex (App (Lam t) u) = just (t ⟨ u ⟩)
redex (App t u) = case redex t of λ
{ nothing → Maybe.map (App t) (redex u)
; (just t') → just (App t' u)
}
redex (Lam t) = Maybe.map Lam (redex t)
mutual
run : {n : ℕ} (t : Expr n) → {i : Size} → Delay (Expr n) i
run t = case redex t of λ
{ nothing → now t
; (just t') → later (∞run t')
}
∞run : {n : ℕ} (t : Expr n) → {i : Size} → ∞Delay (Expr n) i
∞Delay.force (∞run t) = run t
identity : Expr 0
identity = Lam $ Var zero
delta : Expr 0
delta = Lam $ App (Var zero) (Var zero)
omega : Expr 0
omega = App delta delta
identity′ : Delay (Expr 0) ∞
identity′ = run (App identity identity)
open import Relation.Binary.PropositionalEquality
extract : {A : Set} (n : ℕ) (da : Delay A ∞) → Maybe A
extract n (now a) = just a
extract zero (later ∞da) = nothing
extract (suc n) (later ∞da) = extract n (∞Delay.force ∞da)
lemmaIdentity′ : extract 1 identity′ ≡ just identity
lemmaIdentity′ = refl
lemmaOmega : (n : ℕ) → extract n (run omega) ≡ nothing
lemmaOmega zero = refl
lemmaOmega (suc n) = lemmaOmega n
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment