Created
January 23, 2020 13:43
-
-
Save fernandocamargoai/5d330c6ec37578c5fb72bc39524ccd91 to your computer and use it in GitHub Desktop.
Erro
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
INFO: [pid 14484] Worker Worker(salt=140992192, workers=1, host=ufgdeepfood.RadSquare.cloud, username=fernando, pid=14484) running EvaluateIfoodModel(model_module=recommendation.task.model.m | |
atrix_factorization, model_cls=MatrixFactorizationTraining, model_task_id=MatrixFactorizationTraining____500_False_4bb5a61c77, limit_list_size=50, nofilter_iteractions_test=False, task_hash=no | |
ne, num_processes=16, bandit_policy=none, bandit_policy_params={}, bandit_weights=none, batch_size=100000, plot_histogram=False, no_offpolicy_eval=False) | |
2020-01-23 13:36:38,335 : INFO : [pid 14484] Worker Worker(salt=140992192, workers=1, host=ufgdeepfood.RadSquare.cloud, username=fernando, pid=14484) running EvaluateIfoodModel(model_module= | |
recommendation.task.model.matrix_factorization, model_cls=MatrixFactorizationTraining, model_task_id=MatrixFactorizationTraining____500_False_4bb5a61c77, limit_list_size=50, nofilter_iteractio | |
ns_test=False, task_hash=none, num_processes=16, bandit_policy=none, bandit_policy_params={}, bandit_weights=none, batch_size=100000, plot_histogram=False, no_offpolicy_eval=False) | |
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 9603.59it/s] | |
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 9110.30it/s] | |
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 8428.32it/s] | |
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 9323.79it/s] | |
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 9320.12it/s] | |
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1335425.03it/s] | |
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1339376.20it/s] | |
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1332827.20it/s] | |
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1308136.30it/s] | |
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1343920.55it/s] | |
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1343920.55it/s] | |
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1347993.90it/s] | |
ERROR: [pid 14484] Worker Worker(salt=140992192, workers=1, host=ufgdeepfood.RadSquare.cloud, username=fernando, pid=14484) failed EvaluateIfoodModel(model_module=recommendation.task.model. | |
matrix_factorization, model_cls=MatrixFactorizationTraining, model_task_id=MatrixFactorizationTraining____500_False_4bb5a61c77, limit_list_size=50, nofilter_iteractions_test=False, task_hash=n | |
one, num_processes=16, bandit_policy=none, bandit_policy_params={}, bandit_weights=none, batch_size=100000, plot_histogram=False, no_offpolicy_eval=False) | |
Traceback (most recent call last): | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 384, in __init__ | |
codes, categories = factorize(values, sort=True) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/util/_decorators.py", line 208, in wrapper | |
return func(*args, **kwargs) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/algorithms.py", line 672, in factorize | |
values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/algorithms.py", line 508, in _factorize_array | |
values, na_sentinel=na_sentinel, na_value=na_value | |
File "pandas/_libs/hashtable_class_helper.pxi", line 1798, in pandas._libs.hashtable.PyObjectHashTable.factorize | |
File "pandas/_libs/hashtable_class_helper.pxi", line 1718, in pandas._libs.hashtable.PyObjectHashTable._unique | |
TypeError: unhashable type: 'list' | |
During handling of the above exception, another exception occurred: | |
Traceback (most recent call last): | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/luigi/worker.py", line 203, in run | |
new_deps = self._run_get_new_deps() | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/luigi/worker.py", line 140, in _run_get_new_deps | |
task_gen = self.task.run() | |
File "/home/fernando/recommendation-system/recommendation/task/ifood.py", line 605, in run | |
"personalization_at_15": self._mean_personalization(df, 15), | |
File "/home/fernando/recommendation-system/recommendation/task/ifood.py", line 540, in _mean_personalization | |
personalization_per_shift.append(personalization_at_k(group_df["sorted_merchant_idx_list"], k)) | |
File "/home/fernando/recommendation-system/recommendation/rank_metrics.py", line 288, in personalization_at_k | |
return personalization(_get_predicted_at_k(predicted, k)) | |
File "/home/fernando/recommendation-system/recommendation/rank_metrics.py", line 264, in personalization | |
rec_matrix_sparse = make_rec_matrix(predicted) | |
File "/home/fernando/recommendation-system/recommendation/rank_metrics.py", line 256, in make_rec_matrix | |
df = df[['index', 'item']].pivot(index='index', columns='item', values='item') | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/frame.py", line 5919, in pivot | |
return pivot(self, index=index, columns=columns, values=values) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/reshape/pivot.py", line 421, in pivot | |
index = MultiIndex.from_arrays([index, data[columns]]) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/indexes/multi.py", line 420, in from_arrays | |
codes, levels = _factorize_from_iterables(arrays) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2816, in _factorize_from_iterables | |
return map(list, zip(*(_factorize_from_iterable(it) for it in iterables))) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2816, in <genexpr> | |
return map(list, zip(*(_factorize_from_iterable(it) for it in iterables))) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2788, in _factorize_from_iterable | |
cat = Categorical(values, ordered=False) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 386, in __init__ | |
codes, categories = factorize(values, sort=False) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/util/_decorators.py", line 208, in wrapper | |
return func(*args, **kwargs) | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/algorithms.py", line 672, in factorize | |
values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value | |
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/algorithms.py", line 508, in _factorize_array | |
values, na_sentinel=na_sentinel, na_value=na_value | |
File "pandas/_libs/hashtable_class_helper.pxi", line 1798, in pandas._libs.hashtable.PyObjectHashTable.factorize | |
File "pandas/_libs/hashtable_class_helper.pxi", line 1718, in pandas._libs.hashtable.PyObjectHashTable._unique | |
TypeError: unhashable type: 'list' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment