Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save fernandocamargoai/5d330c6ec37578c5fb72bc39524ccd91 to your computer and use it in GitHub Desktop.
Save fernandocamargoai/5d330c6ec37578c5fb72bc39524ccd91 to your computer and use it in GitHub Desktop.
Erro
INFO: [pid 14484] Worker Worker(salt=140992192, workers=1, host=ufgdeepfood.RadSquare.cloud, username=fernando, pid=14484) running EvaluateIfoodModel(model_module=recommendation.task.model.m
atrix_factorization, model_cls=MatrixFactorizationTraining, model_task_id=MatrixFactorizationTraining____500_False_4bb5a61c77, limit_list_size=50, nofilter_iteractions_test=False, task_hash=no
ne, num_processes=16, bandit_policy=none, bandit_policy_params={}, bandit_weights=none, batch_size=100000, plot_histogram=False, no_offpolicy_eval=False)
2020-01-23 13:36:38,335 : INFO : [pid 14484] Worker Worker(salt=140992192, workers=1, host=ufgdeepfood.RadSquare.cloud, username=fernando, pid=14484) running EvaluateIfoodModel(model_module=
recommendation.task.model.matrix_factorization, model_cls=MatrixFactorizationTraining, model_task_id=MatrixFactorizationTraining____500_False_4bb5a61c77, limit_list_size=50, nofilter_iteractio
ns_test=False, task_hash=none, num_processes=16, bandit_policy=none, bandit_policy_params={}, bandit_weights=none, batch_size=100000, plot_histogram=False, no_offpolicy_eval=False)
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 9603.59it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 9110.30it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 8428.32it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 9323.79it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 9320.12it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1335425.03it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1339376.20it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1332827.20it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1308136.30it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1343920.55it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1343920.55it/s]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6044/6044 [00:00<00:00, 1347993.90it/s]
ERROR: [pid 14484] Worker Worker(salt=140992192, workers=1, host=ufgdeepfood.RadSquare.cloud, username=fernando, pid=14484) failed EvaluateIfoodModel(model_module=recommendation.task.model.
matrix_factorization, model_cls=MatrixFactorizationTraining, model_task_id=MatrixFactorizationTraining____500_False_4bb5a61c77, limit_list_size=50, nofilter_iteractions_test=False, task_hash=n
one, num_processes=16, bandit_policy=none, bandit_policy_params={}, bandit_weights=none, batch_size=100000, plot_histogram=False, no_offpolicy_eval=False)
Traceback (most recent call last):
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 384, in __init__
codes, categories = factorize(values, sort=True)
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/util/_decorators.py", line 208, in wrapper
return func(*args, **kwargs)
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/algorithms.py", line 672, in factorize
values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/algorithms.py", line 508, in _factorize_array
values, na_sentinel=na_sentinel, na_value=na_value
File "pandas/_libs/hashtable_class_helper.pxi", line 1798, in pandas._libs.hashtable.PyObjectHashTable.factorize
File "pandas/_libs/hashtable_class_helper.pxi", line 1718, in pandas._libs.hashtable.PyObjectHashTable._unique
TypeError: unhashable type: 'list'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/luigi/worker.py", line 203, in run
new_deps = self._run_get_new_deps()
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/luigi/worker.py", line 140, in _run_get_new_deps
task_gen = self.task.run()
File "/home/fernando/recommendation-system/recommendation/task/ifood.py", line 605, in run
"personalization_at_15": self._mean_personalization(df, 15),
File "/home/fernando/recommendation-system/recommendation/task/ifood.py", line 540, in _mean_personalization
personalization_per_shift.append(personalization_at_k(group_df["sorted_merchant_idx_list"], k))
File "/home/fernando/recommendation-system/recommendation/rank_metrics.py", line 288, in personalization_at_k
return personalization(_get_predicted_at_k(predicted, k))
File "/home/fernando/recommendation-system/recommendation/rank_metrics.py", line 264, in personalization
rec_matrix_sparse = make_rec_matrix(predicted)
File "/home/fernando/recommendation-system/recommendation/rank_metrics.py", line 256, in make_rec_matrix
df = df[['index', 'item']].pivot(index='index', columns='item', values='item')
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/frame.py", line 5919, in pivot
return pivot(self, index=index, columns=columns, values=values)
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/reshape/pivot.py", line 421, in pivot
index = MultiIndex.from_arrays([index, data[columns]])
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/indexes/multi.py", line 420, in from_arrays
codes, levels = _factorize_from_iterables(arrays)
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2816, in _factorize_from_iterables
return map(list, zip(*(_factorize_from_iterable(it) for it in iterables)))
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2816, in <genexpr>
return map(list, zip(*(_factorize_from_iterable(it) for it in iterables)))
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 2788, in _factorize_from_iterable
cat = Categorical(values, ordered=False)
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/arrays/categorical.py", line 386, in __init__
codes, categories = factorize(values, sort=False)
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/util/_decorators.py", line 208, in wrapper
return func(*args, **kwargs)
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/algorithms.py", line 672, in factorize
values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value
File "/opt/anaconda3/envs/recommendation-system/lib/python3.6/site-packages/pandas/core/algorithms.py", line 508, in _factorize_array
values, na_sentinel=na_sentinel, na_value=na_value
File "pandas/_libs/hashtable_class_helper.pxi", line 1798, in pandas._libs.hashtable.PyObjectHashTable.factorize
File "pandas/_libs/hashtable_class_helper.pxi", line 1718, in pandas._libs.hashtable.PyObjectHashTable._unique
TypeError: unhashable type: 'list'
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment