Created
December 31, 2013 16:54
-
-
Save fabianlischka/8199483 to your computer and use it in GitHub Desktop.
Small helper function to represent a Float64 exactly
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# reprExact is a small helper function that takes a float (currently only Float64) | |
# and returns an "exact" representation of that float. Invariant: | |
# x == eval(parse(reprExact(x))), and even | |
# bits(x) == bits(eval(parse(reprExact(x)))) | |
# Not tested yet: subnormals, signaling NaNs, NaNs with payload | |
function reprExact(x::Float64) | |
w, p, bias = 11, 53, 1023 # 8,24,127 for float32 | |
b = bits(x) | |
Sbits = b[1:1] | |
Spm = Sbits == "0" ? "+" : "-" | |
Ebits = b[2:2+w-1] | |
Tbits = b[2+w:] | |
S = parseint(Sbits,2) | |
E = parseint(Ebits,2) | |
T = parseint(Tbits,2) | |
if E == 2^w-1 # all bits set: NaN or Inf | |
if T != 0 # a) NaN | |
if Tbits[1] == '1' # quiet NaN | |
return string(Spm,"NaN #q ",Tbits) | |
else # silent NaN | |
return string(Spm,"NaN #s ",Tbits) | |
end | |
else # b) Inf | |
return string(Spm,"Inf") | |
end | |
elseif E == 0 # no bits set: subnormal or zero | |
if T != 0 # d) subnormal | |
# v = (-1)^S × 2^(emin)×(0+2^(1-p)×T) = (-1)^S x T x 2^(emin+1-p), emin+1-p = 2+bias-p | |
return string(Spm,T,"*2.0^(",2+bias-p,")") | |
else # e) zero | |
return string(Spm,"0.0") | |
end | |
else # normal number! | |
# c) If E otherwise, then v = (-1)^S × 2^(E-bias)×(1+2^(1-p)×T) | |
return string(Spm,"(1+",T,"/2^",p-1,")*2.0^(",E-bias,")") | |
end | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment