Created
January 11, 2014 18:17
-
-
Save evandrix/8374594 to your computer and use it in GitHub Desktop.
Project Euler Problem 438
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <cmath> | |
#include <stdlib.h> | |
#include <cstring> | |
using namespace std; | |
/** | |
* Problem 438 | |
* | |
* Example: | |
* x^4-(1/2)x^3-(30)x^2+x+2 = 0 | |
* a= -(1/2) | |
* b= -30 | |
* c= 1 | |
* d= 2 | |
* x1= 0.2751 | |
* x2= -0.24275 | |
* x3= -5.24368 | |
* x4= 5.71133 | |
* | |
* | |
* */ | |
//@Author Xavier | |
//@Date 4 Oct 2013 | |
// Newton horner's method: | |
// http://ganeshtiwaridotcomdotnp.blogspot.pt/2009/12/c-c-code-newton-horners-method-for.html | |
// x1, ..., xn SORTED, ⌊xi⌋ = i for 1 ≤ i ≤ n | |
int computePolynomial(double *solution ,int n, double *coeficients) | |
{ | |
// limit of 50 iterations to find the roots | |
int i, limit = 50, rootCount = 0; | |
double x = 1.0, a[n], b[n],c[n]; | |
while(n>0 && limit > 0) | |
{ | |
c[0]=b[0]=a[0]; | |
for(i=1;i<=n;i++) | |
b[i]=a[i]+b[i-1]*x; | |
for(i=1;i<n;i++) | |
c[i]=b[i]+c[i-1]*x; | |
if(fabs(c[n-1])==0.0) // "Divide by Zero : ERROR !! " | |
break; | |
x-=b[n]/c[n-1]; | |
if(fabs(b[n]/c[n-1])<0.00001) | |
{ | |
solution[rootCount++] = x; | |
for(i=1;i<n;i++) | |
a[i]=b[i]; | |
n--; | |
} | |
limit --; | |
} | |
if (!limit) return 0; // no solution | |
return 1; // true | |
} | |
void *threadExec() | |
{ | |
int i, j, n = 4; | |
double* solution, *coeficients , aux, sum = 0.0, reset = -10000.0; | |
bool conditionMet = false; | |
solution = (double*) malloc (n * sizeof(double)); | |
memset(solution, 0, n * sizeof(double)); | |
coeficients[0] = 1.0; | |
coeficients[1] = reset; | |
coeficients[2] = reset; | |
coeficients[3] = reset; | |
coeficients[4] = reset; | |
do | |
{ | |
if (computePolynomial(solution, n, coeficients)) | |
{ | |
for (i = 1; i <= n; i++) | |
{ | |
cout << "[" << coeficients[i-1] << "] X" << i << " is: " << fixed << solution[i - 1] << endl; | |
} | |
cout << "[" << coeficients[n] << "]" << endl; | |
// you found roots. sort solutions | |
for (i = 0; i < n; i++) | |
{ | |
for (j = i + 1; j < n; j++) | |
{ | |
if (solution[j] < solution[i]) | |
{ | |
aux = solution[i]; | |
solution[i] = solution[j]; | |
solution[j] = aux; | |
} | |
} | |
} | |
conditionMet = true; | |
for (i = 1; i <= n; i++) | |
{ | |
if (floor(solution[i - 1]) != i) conditionMet = false; | |
} | |
if (conditionMet) // we found a solution | |
{ | |
for (i = 1; i <= n; i++) sum += fabs(coeficients[i]); | |
cout << "conditions Met! SUM: " << sum << endl; | |
return (void*)1; | |
} | |
} | |
// increment coeficients | |
if (coeficients[4] < 10000) | |
{ | |
//cout << "[\t" <<coeficients[1] << "\t|\t" <<coeficients[2] << "\t|\t" <<coeficients[3] << "\t|\t" <<coeficients[4] << "\t]" << endl; | |
coeficients[4] ++; | |
} | |
else if (coeficients[3] < 10000) | |
{ | |
//cout << "[\t" <<coeficients[1] << "\t|\t" <<coeficients[2] << "\t|\t" <<coeficients[3] << "\t|\t" <<coeficients[4] << "\t]" << endl; | |
coeficients[3] ++; | |
coeficients[4] = reset; | |
} | |
else if (coeficients[2] < 10000) | |
{ | |
//cout << "[\t" <<coeficients[1] << "\t|\t" <<coeficients[2] << "\t|\t" <<coeficients[3] << "\t|\t" <<coeficients[4] << "\t]" << endl; | |
coeficients[2] ++; | |
coeficients[3] = reset; | |
coeficients[4] = reset; | |
} | |
else if (coeficients[2] < 10000) | |
{ | |
cout << "[\t" <<coeficients[1] << "\t|\t" <<coeficients[2] << "\t|\t" <<coeficients[3] << "\t|\t" <<coeficients[4] << "\t]" << endl; | |
coeficients[2] ++; | |
coeficients[3] = reset; | |
coeficients[4] = reset; | |
} | |
else if (coeficients[1] < 10000) | |
{ | |
cout << "[\t" <<coeficients[1] << "\t|\t" <<coeficients[2] << "\t|\t" <<coeficients[3] << "\t|\t" <<coeficients[4] << "\t]" << endl; | |
coeficients[1] ++; | |
coeficients[2] = reset; | |
coeficients[3] = reset; | |
coeficients[4] = reset; | |
} | |
else | |
{ | |
cout << "No solution found" << endl; | |
return (void*) 0; | |
} | |
} | |
while(!conditionMet); | |
return (void*) 0; | |
} | |
int main() | |
{ | |
int i,n = 4; | |
double *coeficients; | |
cout << "The degree of equations is : " << n << endl; | |
coeficients = (double*) malloc ((n + 1) * sizeof(double)); | |
threadExec(); | |
return 1; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <math.h> | |
#include <stdlib.h> | |
#include <cstring> | |
using namespace std; | |
/** | |
* Problem 438 | |
* | |
* Example: | |
* x^4-(1/2)x^3-(30)x^2+x+2 = 0 | |
* a= -(1/2) | |
* b= -30 | |
* c= 1 | |
* d= 2 | |
* x1= 0.2751 | |
* x2= -0.24275 | |
* x3= -5.24368 | |
* x4= 5.71133 | |
* | |
* | |
* */ | |
//@Author Xavier | |
//@Date 4 Oct 2013 | |
// Newton horner's method: | |
// http://ganeshtiwaridotcomdotnp.blogspot.pt/2009/12/c-c-code-newton-horners-method-for.html | |
int computePolynomial(double *solution ,int n, double *coeficients) | |
{ | |
// limit of 50 iterations to find the roots | |
int i, limit = 50, rootCount = 0; | |
double x = 1.0, b[n],c[n]; | |
while(n>0 && limit > 0) | |
{ | |
c[0]=b[0]=coeficients[0]; | |
for(i=1;i<=n;i++) | |
b[i]=coeficients[i]+b[i-1]*x; | |
for(i=1;i<n;i++) | |
c[i]=b[i]+c[i-1]*x; | |
if(fabs(c[n-1])==0.0) // "Divide by Zero : ERROR !! " | |
break; | |
x-=b[n]/c[n-1]; | |
if(fabs(b[n]/c[n-1])<0.00001) | |
{ | |
solution[rootCount++] = x; | |
for(i=1;i<n;i++) | |
coeficients[i]=b[i]; | |
n--; | |
} | |
limit --; | |
} | |
if (!limit) return 0; // no solution | |
return 1; // true | |
} | |
int main() | |
{ | |
int n,i; | |
double* solution, *coeficients; | |
cout << "Enter the degree of equations : "; | |
cin >> n; | |
solution = (double*) malloc (n * sizeof(double)); | |
coeficients = (double*) malloc ((n + 1) * sizeof(double)); | |
memset(solution, 0, n * sizeof(double)); | |
cout<<"Enter all coefficients \n"; | |
for(i = 0; i <= n; i++) | |
cin >> coeficients[i]; | |
if (computePolynomial(solution, n, coeficients)) | |
{ | |
for (i = 1; i <= n; i++) | |
{ | |
cout << "\nRoot X" << i << " is: " << fixed << solution[i - 1] << endl; | |
} | |
} | |
else | |
cout << "No Solution Found!" << endl; | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment