-
-
Save endolith/43056072940974b233841b3ca0e32c08 to your computer and use it in GitHub Desktop.
Gaussian process bootstrap plots in iPython notebook
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
# <nbformat>3.0</nbformat> | |
# <codecell> | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy import ndimage | |
from sklearn.gaussian_process import GaussianProcess | |
# <codecell> | |
def pdense(x, y, sigma, M=1000): | |
""" Plot probability density of y with known stddev sigma | |
""" | |
assert len(x) == len(y) and len(x) == len(sigma) | |
N = len(x) | |
# TODO: better y ranging | |
ymin, ymax = min(y - 2 * sigma), max(y + 2 * sigma) | |
yy = np.linspace(ymin, ymax, M) | |
a = [np.exp(-((Y - yy) / s) ** 2) / s for Y, s in zip(y, sigma)] | |
A = np.array(a) | |
A = A.reshape(N, M) | |
plt.imshow(-A.T, cmap='gray', aspect='auto', | |
origin='lower', extent=(min(x)[0], max(x)[0], ymin, ymax)) | |
plt.title('Density plot') | |
# <codecell> | |
def gpr(seed=0, N=20, M=1000, sigma=1.0): | |
""" from scikits.learn demo | |
""" | |
np.random.seed(seed) | |
def f(x): | |
"""The function to predict.""" | |
return x * np.sin(x) | |
X = np.linspace(0.1, 9.9, 20) | |
X = np.atleast_2d(X).T | |
y = f(X).ravel() | |
y = np.random.normal(y, sigma) | |
x = np.atleast_2d(np.linspace(0, 10, M)).T | |
nugget = (sigma / y) ** 2 | |
gp = GaussianProcess(corr='squared_exponential', theta0=1e-1, | |
thetaL=1e-1, thetaU=1.0, | |
nugget=nugget, | |
random_start=100) | |
gp.fit(X, y) | |
y2, MSE = gp.predict(x, eval_MSE=True) | |
s2 = np.sqrt(MSE) | |
return X, y, x, y2, s2 | |
# <codecell> | |
X, y, x, y2, s2 = gpr(seed=0) | |
plt.figure(1) | |
pdense(x, y2, s2, M=1000) | |
plt.plot(X, y, 'r.') | |
plt.plot(x, y2, 'b:') | |
a = plt.gca() | |
a.set_ylim(-10, 15) | |
plt.xlabel('$x$') | |
plt.ylabel('$f(x)$') | |
plt.show() | |
# <codecell> | |
# Run the experiment many times | |
N = 200 | |
Y = np.nan * np.ones((N, len(x))) | |
s = np.nan * np.ones((N, len(x))) | |
print 'Running trial', | |
for i in xrange(N): | |
X, y, x, y2, s2 = gpr(seed=i) | |
Y[i,:] = y2 | |
s[i,:] = s2 | |
print i, | |
print '\nDone!' | |
plt.plot(x, Y.T, 'b', alpha=0.15) | |
a = plt.gca() | |
a.set_ylim(-10, 15) | |
plt.title('Bootstrap spaghetti plot') | |
plt.xlabel('$x$') | |
plt.ylabel('$f(x)$') | |
plt.show() | |
# <codecell> | |
ymin, ymax = -10, 15 | |
bin_width = 0.15 | |
y_bins = np.arange(ymin, ymax, bin_width) | |
H = np.zeros((len(y_bins)-1, len(x))) | |
m = np.zeros(x.shape) | |
for i in xrange(len(x)): | |
h, e = np.histogram(Y[:,i], bins=np.arange(ymin, ymax, bin_width), density=True) | |
H[:,i] = h | |
m[i] = np.median(Y[:,i]) | |
hb = ndimage.gaussian_filter(H, sigma=1) | |
plt.imshow(-hb, cmap='gray', aspect='auto', origin='lower', | |
extent=(min(x)[0], max(x)[0], ymin, ymax)) | |
plt.plot(x, m, 'b:') | |
a = plt.gca() | |
a.set_ylim(-10, 15) | |
plt.title('Bootstrap density plot') | |
plt.xlabel('$x$') | |
plt.ylabel('$f(x)$') | |
# <codecell> | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment