Skip to content

Instantly share code, notes, and snippets.

@earthgecko
Created March 12, 2019 11:32
Show Gist options
  • Save earthgecko/b77628cde9cce4c643877e2cde011fca to your computer and use it in GitHub Desktop.
Save earthgecko/b77628cde9cce4c643877e2cde011fca to your computer and use it in GitHub Desktop.
Allow Boundary to analyse short time series
from __future__ import division
import numpy as np
import scipy
import traceback
import logging
from time import time
from redis import StrictRedis
import sys
import os.path
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))
sys.path.insert(0, os.path.dirname(__file__))
from settings import (
MAX_TOLERABLE_BOREDOM,
MIN_TOLERABLE_LENGTH,
STALE_PERIOD,
REDIS_SOCKET_PATH,
BOREDOM_SET_SIZE,
ENABLE_BOUNDARY_DEBUG,
REDIS_PASSWORD,
)
from algorithm_exceptions import (TooShort, Stale, Boring)
skyline_app = 'boundary'
skyline_app_logger = '%sLog' % skyline_app
logger = logging.getLogger(skyline_app_logger)
# @modified 20180519 - Feature #2378: Add redis auth to Skyline and rebrow
if REDIS_PASSWORD:
redis_conn = StrictRedis(password=REDIS_PASSWORD, unix_socket_path=REDIS_SOCKET_PATH)
else:
redis_conn = StrictRedis(unix_socket_path=REDIS_SOCKET_PATH)
def boundary_no_mans_land():
"""
This is no man's land. Do anything you want in here, as long as you return a
boolean that determines whether the input timeseries is anomalous or not.
To add an algorithm, define it here, and add its name to
:mod:`settings.BOUNDARY_ALGORITHMS`.
"""
return True
def autoaggregate_ts(timeseries, autoaggregate_value):
"""
This is a utility function used to autoaggregate a timeseries. If a
timeseries data set has 6 datapoints per minute but only one data value
every minute then autoaggregate will aggregate every autoaggregate_value.
"""
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: autoaggregate_ts at %s seconds' % str(autoaggregate_value))
aggregated_timeseries = []
if len(timeseries) < 60:
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: autoaggregate_ts - timeseries less than 60 datapoints, TooShort')
raise TooShort()
int_end_timestamp = int(timeseries[-1][0])
last_hour = int_end_timestamp - 3600
last_timestamp = int_end_timestamp
next_timestamp = last_timestamp - int(autoaggregate_value)
start_timestamp = last_hour
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: autoaggregate_ts - aggregating from %s to %s' % (str(start_timestamp), str(int_end_timestamp)))
valid_timestamps = False
try:
valid_timeseries = int_end_timestamp - start_timestamp
if valid_timeseries == 3600:
valid_timestamps = True
except Exception as e:
logger.error('Algorithm error: %s' % traceback.format_exc())
logger.error('error: %e' % e)
aggregated_timeseries = []
return aggregated_timeseries
if valid_timestamps:
try:
# Check sane variables otherwise we can just hang here in a while loop
while int(next_timestamp) > int(start_timestamp):
value = np.sum(scipy.array([int(x[1]) for x in timeseries if x[0] <= last_timestamp and x[0] > next_timestamp]))
aggregated_timeseries += ((last_timestamp, value),)
last_timestamp = next_timestamp
next_timestamp = last_timestamp - autoaggregate_value
aggregated_timeseries.reverse()
return aggregated_timeseries
except Exception as e:
logger.error('Algorithm error: %s' % traceback.format_exc())
logger.error('error: %e' % e)
aggregated_timeseries = []
return aggregated_timeseries
else:
logger.error('could not aggregate - timestamps not valid for aggregation')
aggregated_timeseries = []
return aggregated_timeseries
def less_than(timeseries, metric_name, metric_expiration_time, metric_min_average, metric_min_average_seconds, metric_trigger):
# timeseries, metric_name, metric_expiration_time, metric_min_average,
# metric_min_average_seconds, metric_trigger, autoaggregate,
# autoaggregate_value):
"""
A timeseries is anomalous if the datapoint is less than metric_trigger
"""
# @modified 20190312 - Task #2862: Allow Boundary to analyse short time series
# https://github.com/earthgecko/skyline/issues/88
# if len(timeseries) < 10:
if len(timeseries) < 1:
return False
if timeseries[-1][1] < metric_trigger:
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: less_than - %s less_than %s' % (
str(timeseries[-1][1]), str(metric_trigger)))
return True
return False
def greater_than(timeseries, metric_name, metric_expiration_time, metric_min_average, metric_min_average_seconds, metric_trigger):
"""
A timeseries is anomalous if the datapoint is greater than metric_trigger
"""
# @modified 20190312 - Task #2862: Allow Boundary to analyse short time series
# https://github.com/earthgecko/skyline/issues/88
# if len(timeseries) < 10:
if len(timeseries) < 1:
return False
if timeseries[-1][1] > metric_trigger:
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: grater_than - %s grater_than %s' % (
str(timeseries[-1][1]), str(metric_trigger)))
return True
return False
def detect_drop_off_cliff(timeseries, metric_name, metric_expiration_time, metric_min_average, metric_min_average_seconds, metric_trigger):
"""
A timeseries is anomalous if the average of the last 10 datapoints is
<trigger> times greater than the last data point AND if has not experienced
frequent cliff drops in the last 10 datapoints. If the timeseries has
experienced 2 or more datapoints of equal or less values in the last 10 or
EXPIRATION_TIME datapoints or is less than a MIN_AVERAGE if set the
algorithm determines the datapoint as NOT anomalous but normal.
This algorithm is most suited to timeseries with most datapoints being > 100
(e.g high rate). The arbitrary <trigger> values become more noisy with
lower value datapoints, but it still matches drops off cliffs.
"""
if len(timeseries) < 30:
return False
try:
int_end_timestamp = int(timeseries[-1][0])
# Determine resolution of the data set
int_second_last_end_timestamp = int(timeseries[-2][0])
resolution = int_end_timestamp - int_second_last_end_timestamp
ten_data_point_seconds = resolution * 10
ten_datapoints_ago = int_end_timestamp - ten_data_point_seconds
ten_datapoint_array = scipy.array([x[1] for x in timeseries if x[0] <= int_end_timestamp and x[0] > ten_datapoints_ago])
ten_datapoint_array_len = len(ten_datapoint_array)
except:
return None
if ten_datapoint_array_len > 3:
ten_datapoint_min_value = np.amin(ten_datapoint_array)
# DO NOT handle if negative integers are in the range, where is the
# bottom of the cliff if a range goes negative? Testing with a noisy
# sine wave timeseries that had a drop off cliff introduced to the
# postive data side, proved that this algorithm does work on timeseries
# with data values in the negative range
if ten_datapoint_min_value < 0:
return False
# autocorrect if there are there are 0s in the data, like graphite expects
# 1 datapoint every 10 seconds, but the timeseries only has 1 every 60 seconds
ten_datapoint_max_value = np.amax(ten_datapoint_array)
# The algorithm should have already fired in 10 datapoints if the
# timeseries dropped off a cliff, these are all zero
if ten_datapoint_max_value == 0:
return False
# If the lowest is equal to the highest, no drop off cliff
if ten_datapoint_min_value == ten_datapoint_max_value:
return False
# if ten_datapoint_max_value < 10:
# return False
ten_datapoint_array_sum = np.sum(ten_datapoint_array)
ten_datapoint_value = int(ten_datapoint_array[-1])
ten_datapoint_average = ten_datapoint_array_sum / ten_datapoint_array_len
ten_datapoint_value = int(ten_datapoint_array[-1])
# if a metric goes up and down a lot and falls off a cliff frequently
# it is normal, not anomalous
try:
number_of_similar_datapoints = len(np.where(ten_datapoint_array <= ten_datapoint_min_value))
except:
return None
# Detect once only - to make this useful and not noisy the first one
# would have already fired and detected the drop
if number_of_similar_datapoints > 2:
return False
# evaluate against 20 datapoints as well, reduces chatter on peaky ones
# tested with 60 as well and 20 is sufficient to filter noise
try:
twenty_data_point_seconds = resolution * 20
twenty_datapoints_ago = int_end_timestamp - twenty_data_point_seconds
twenty_datapoint_array = scipy.array([x[1] for x in timeseries if x[0] <= int_end_timestamp and x[0] > twenty_datapoints_ago])
number_of_similar_datapoints_in_twenty = len(np.where(twenty_datapoint_array <= ten_datapoint_min_value))
if number_of_similar_datapoints_in_twenty > 2:
return False
except:
return None
# Check if there is a similar data point in EXPIRATION_TIME
# Disabled as redis alert cache will filter on this
# if metric_expiration_time > twenty_data_point_seconds:
# expiration_time_data_point_seconds = metric_expiration_time
# expiration_time_datapoints_ago = int_end_timestamp - metric_expiration_time
# expiration_time_datapoint_array = scipy.array([x[1] for x in timeseries if x[0] <= int_end_timestamp and x[0] > expiration_time_datapoints_ago])
# number_of_similar_datapoints_in_expiration_time = len(np.where(expiration_time_datapoint_array <= ten_datapoint_min_value))
# if number_of_similar_datapoints_in_expiration_time > 2:
# return False
if metric_min_average > 0 and metric_min_average_seconds > 0:
try:
min_average = metric_min_average
min_average_seconds = metric_min_average_seconds
min_average_data_point_seconds = resolution * min_average_seconds
# min_average_datapoints_ago = int_end_timestamp - (resolution * min_average_seconds)
min_average_datapoints_ago = int_end_timestamp - min_average_seconds
min_average_array = scipy.array([x[1] for x in timeseries if x[0] <= int_end_timestamp and x[0] > min_average_datapoints_ago])
min_average_array_average = np.sum(min_average_array) / len(min_average_array)
if min_average_array_average < min_average:
return False
except:
return None
if ten_datapoint_max_value < 101:
trigger = 15
if ten_datapoint_max_value < 20:
trigger = ten_datapoint_average / 2
if ten_datapoint_max_value > 100:
trigger = 100
if ten_datapoint_value == 0:
# Cannot divide by 0, so set to 0.1 to prevent error
ten_datapoint_value = 0.1
if ten_datapoint_value == 1:
trigger = 1
if ten_datapoint_value == 1 and ten_datapoint_max_value < 10:
trigger = 0.1
if ten_datapoint_value == 0.1 and ten_datapoint_average < 1 and ten_datapoint_array_sum < 7:
trigger = 7
ten_datapoint_result = ten_datapoint_average / ten_datapoint_value
if int(ten_datapoint_result) > trigger:
if ENABLE_BOUNDARY_DEBUG:
logger.info(
'detect_drop_off_cliff - %s, ten_datapoint_value = %s, ten_datapoint_array_sum = %s, ten_datapoint_average = %s, trigger = %s, ten_datapoint_result = %s' % (
str(int_end_timestamp),
str(ten_datapoint_value),
str(ten_datapoint_array_sum),
str(ten_datapoint_average),
str(trigger), str(ten_datapoint_result)))
return True
return False
def run_selected_algorithm(
timeseries, metric_name, metric_expiration_time, metric_min_average,
metric_min_average_seconds, metric_trigger, alert_threshold,
metric_alerters, autoaggregate, autoaggregate_value, algorithm):
"""
Filter timeseries and run selected algorithm.
"""
if ENABLE_BOUNDARY_DEBUG:
logger.info(
'debug :: assigning in algoritms.py - %s, %s' % (
metric_name, algorithm))
# Get rid of short series
# @modified 20190312 - Task #2862: Allow Boundary to analyse short time series
# https://github.com/earthgecko/skyline/issues/88
# Allow class as TooShort if the algorithm is detect_drop_off_cliff
if algorithm == 'detect_drop_off_cliff':
if len(timeseries) < MIN_TOLERABLE_LENGTH:
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: TooShort - %s, %s' % (metric_name, algorithm))
raise TooShort()
# Get rid of stale series
if time() - timeseries[-1][0] > STALE_PERIOD:
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: Stale - %s, %s' % (metric_name, algorithm))
raise Stale()
# Get rid of boring series
if len(set(item[1] for item in timeseries[-MAX_TOLERABLE_BOREDOM:])) == BOREDOM_SET_SIZE:
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: Boring - %s, %s' % (metric_name, algorithm))
raise Boring()
if autoaggregate:
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: auto aggregating %s for %s' % (metric_name, algorithm))
try:
agg_timeseries = autoaggregate_ts(timeseries, autoaggregate_value)
if ENABLE_BOUNDARY_DEBUG:
logger.info(
'debug :: aggregated_timeseries returned %s for %s' % (
metric_name, algorithm))
except Exception as e:
agg_timeseries = []
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug error - autoaggregate excpection %s for %s' % (metric_name, algorithm))
logger.error('Algorithm error: %s' % traceback.format_exc())
logger.error('error: %e' % e)
if len(agg_timeseries) > 10:
timeseries = agg_timeseries
else:
if ENABLE_BOUNDARY_DEBUG:
logger.info('debug :: TooShort - %s, %s' % (metric_name, algorithm))
raise TooShort()
# @modified 20190312 - Task #2862: Allow Boundary to analyse short time series
# https://github.com/earthgecko/skyline/issues/88
# if len(timeseries) < 10:
if len(timeseries) < 1:
if ENABLE_BOUNDARY_DEBUG:
logger.info(
'debug :: timeseries too short - %s - timeseries length - %s' % (
metric_name, str(len(timeseries))))
raise TooShort()
try:
ensemble = [globals()[algorithm](timeseries, metric_name, metric_expiration_time, metric_min_average, metric_min_average_seconds, metric_trigger)]
if ensemble.count(True) == 1:
if ENABLE_BOUNDARY_DEBUG:
logger.info(
'debug :: anomalous datapoint = %s - %s, %s, %s, %s, %s, %s, %s, %s' % (
str(timeseries[-1][1]),
str(metric_name), str(metric_expiration_time),
str(metric_min_average),
str(metric_min_average_seconds),
str(metric_trigger), str(alert_threshold),
str(metric_alerters), str(algorithm))
)
return True, ensemble, timeseries[-1][1], metric_name, metric_expiration_time, metric_min_average, metric_min_average_seconds, metric_trigger, alert_threshold, metric_alerters, algorithm
else:
if ENABLE_BOUNDARY_DEBUG:
logger.info(
'debug :: not anomalous datapoint = %s - %s, %s, %s, %s, %s, %s, %s, %s' % (
str(timeseries[-1][1]),
str(metric_name), str(metric_expiration_time),
str(metric_min_average),
str(metric_min_average_seconds),
str(metric_trigger), str(alert_threshold),
str(metric_alerters), str(algorithm))
)
return False, ensemble, timeseries[-1][1], metric_name, metric_expiration_time, metric_min_average, metric_min_average_seconds, metric_trigger, alert_threshold, metric_alerters, algorithm
except:
logger.error('Algorithm error: %s' % traceback.format_exc())
return False, [], 1, metric_name, metric_expiration_time, metric_min_average, metric_min_average_seconds, metric_trigger, alert_threshold, metric_alerters, algorithm
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment