Skip to content

Instantly share code, notes, and snippets.

@devxpy
Created June 23, 2023 08:34
Show Gist options
  • Save devxpy/9a9ea5edca72d79fd14d201e05d0af8a to your computer and use it in GitHub Desktop.
Save devxpy/9a9ea5edca72d79fd14d201e05d0af8a to your computer and use it in GitHub Desktop.
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.utils import load_image
controlnet = ControlNetModel.from_pretrained("DionTimmer/controlnet_qrcode-control_v11p_sd21",
torch_dtype=torch.float16)
model_id = "stabilityai/stable-diffusion-2-1"
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
model_id,
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
pipe.enable_xformers_memory_efficient_attention()
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
sd_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None)
sd_pipe.enable_xformers_memory_efficient_attention()
sd_pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
sd_pipe.to("cuda")
def resize_for_condition_image(input_image: Image, resolution: int):
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(round(H / 64.0)) * 64
W = int(round(W / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
return img
# play with guidance_scale, controlnet_conditioning_scale and strength to make a valid QR Code Image
# qr code image
source_image = load_image(
"https://s3.amazonaws.com/moonup/production/uploads/6064e095abd8d3692e3e2ed6/A_RqHaAM6YHBodPLwqtjn.png")
# initial image, anything
# init_image = load_image("https://s3.amazonaws.com/moonup/production/uploads/noauth/KfMBABpOwIuNolv1pe3qX.jpeg")
condition_image = resize_for_condition_image(source_image, 768)
prompt = "a bilboard in NYC with a qrcode"
negative_prompt = "ugly, disfigured, low quality, blurry, nsfw"
generator = torch.manual_seed(123121231)
with torch.no_grad(), torch.inference_mode():
init_image = sd_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=768,
height=768,
guidance_scale=7,
# controlnet_conditioning_scale=10.0,
generator=generator,
# strength=0.9,
num_inference_steps=50,
).images[0]
# init_image = resize_for_condition_image(init_image, 768)
pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=init_image,
control_image=condition_image,
width=768,
height=768,
guidance_scale=7,
controlnet_conditioning_scale=2.0,
generator=generator,
strength=0.9,
num_inference_steps=150,
).images[0].save("out.png")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment