-
-
Save clarle/a188d75e90f783660c91acca9bb12f9b to your computer and use it in GitHub Desktop.
Patched alignment and merging scripts including the option for masking via the detected face points, seamless clone and erosion and blurring of the masks.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import cv2 | |
import dlib | |
import json | |
import numpy | |
import skimage | |
from pathlib import Path | |
from tqdm import tqdm | |
from umeyama import umeyama | |
from face_alignment import FaceAlignment, LandmarksType | |
def monkey_patch_face_detector(_): | |
detector = dlib.get_frontal_face_detector() | |
class Rect(object): | |
def __init__(self,rect): | |
self.rect=rect | |
def detect( *args ): | |
return [ Rect(x) for x in detector(*args) ] | |
return detect | |
dlib.cnn_face_detection_model_v1 = monkey_patch_face_detector | |
FACE_ALIGNMENT = FaceAlignment( LandmarksType._2D, enable_cuda=True, flip_input=False ) | |
mean_face_x = numpy.array([ | |
0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124, | |
0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036, | |
0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918, | |
0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149, | |
0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721, | |
0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874, | |
0.553364, 0.490127, 0.42689 ]) | |
mean_face_y = numpy.array([ | |
0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891, | |
0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326, | |
0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733, | |
0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099, | |
0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805, | |
0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746, | |
0.784792, 0.824182, 0.831803, 0.824182 ]) | |
landmarks_2D = numpy.stack( [ mean_face_x, mean_face_y ], axis=1 ) | |
def transform( image, mat, size, padding=0 ): | |
mat = mat * size | |
mat[:,2] += padding | |
new_size = int( size + padding * 2 ) | |
return cv2.warpAffine( image, mat, ( new_size, new_size ) ) | |
def main( args ): | |
input_dir = Path( args.input_dir ) | |
assert input_dir.is_dir() | |
output_dir = input_dir / args.output_dir | |
output_dir.mkdir( parents=True, exist_ok=True ) | |
output_file = input_dir / args.output_file | |
input_files = list( input_dir.glob( "*." + args.file_type ) ) | |
if args.maxFrames > 0: | |
input_files=input_files[args.startFrame:args.startFrame+args.maxFrames] | |
elif args.startFrame>0: | |
input_files=input_files[args.startFrame:] | |
assert len( input_files ) > 0, "Can't find input files" | |
def iter_face_alignments(): | |
for fn in tqdm( input_files ): | |
image = cv2.imread( str(fn) ) | |
if image is None: | |
tqdm.write( "Can't read image file: ", fn ) | |
continue | |
faces = FACE_ALIGNMENT.get_landmarks( skimage.io.imread( str(fn) ) ) | |
if faces is None: continue | |
if len(faces) == 0: continue | |
if args.only_one_face and len(faces) != 1: continue | |
for i,points in enumerate(faces): | |
alignment = umeyama( points[17:], landmarks_2D, True )[0:2] | |
aligned_image = transform( image, alignment, 160, 48 ) | |
if len(faces) == 1: | |
out_fn = "{}.jpg".format( Path(fn).stem ) | |
else: | |
out_fn = "{}_{}.jpg".format( Path(fn).stem, i ) | |
out_fn = output_dir / out_fn | |
cv2.imwrite( str(out_fn), aligned_image ) | |
yield str(fn.relative_to(input_dir)), str(out_fn.relative_to(input_dir)), list( alignment.ravel() ), list(points.flatten().astype(float)) | |
face_alignments = list( iter_face_alignments() ) | |
with output_file.open('w') as f: | |
results = json.dumps( face_alignments, ensure_ascii=False ) | |
f.write( results ) | |
print( "Save face alignments to output file:", output_file ) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument( "input_dir" , type=str ) | |
parser.add_argument( "output_dir" , type=str, nargs='?', default='aligned' ) | |
parser.add_argument( "output_file", type=str, nargs='?', default='alignments.json' ) | |
parser.set_defaults( only_one_face=False ) | |
parser.add_argument('--one-face' , dest='only_one_face', action='store_true' ) | |
parser.add_argument('--all-faces', dest='only_one_face', action='store_false' ) | |
parser.add_argument( "--startFrame", type=int, default='0' ) | |
parser.add_argument( "--maxFrames", type=int, default='0' ) | |
parser.add_argument( "--file-type", type=str, default='jpg' ) | |
main( parser.parse_args() ) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import cv2 | |
import json | |
import numpy | |
from pathlib import Path | |
from tqdm import tqdm | |
from scipy import ndimage | |
from model import autoencoder_A | |
from model import autoencoder_B | |
from model import encoder, decoder_A, decoder_B | |
encoder .load_weights( "models/encoder.h5" ) | |
decoder_A.load_weights( "models/decoder_A.h5" ) | |
decoder_B.load_weights( "models/decoder_B.h5" ) | |
def convert_one_image( autoencoder, image, mat,facepoints,erosion_kernel,blurSize,seamlessClone,maskType ): | |
size = 64 | |
image_size = image.shape[1], image.shape[0] | |
face = cv2.warpAffine( image, mat * size, (size,size) ) | |
face = numpy.expand_dims( face, 0 ) | |
new_face = autoencoder.predict( face / 255.0 )[0] | |
new_face = numpy.clip( new_face * 255, 0, 255 ).astype( image.dtype ) | |
face_mask = numpy.zeros(image.shape,dtype=float) | |
if 'Rect' in maskType: | |
face_src = numpy.ones(new_face.shape,dtype=float) | |
cv2.warpAffine( face_src, mat * size, image_size, face_mask, cv2.WARP_INVERSE_MAP, cv2.BORDER_TRANSPARENT ) | |
hull_mask = numpy.zeros(image.shape,dtype=float) | |
if 'Hull' in maskType: | |
hull = cv2.convexHull( numpy.array( facepoints ).reshape((-1,2)).astype(int) ).flatten().reshape( (-1,2) ) | |
cv2.fillConvexPoly( hull_mask,hull,(1,1,1) ) | |
if maskType == 'FaceHull': | |
image_mask = hull_mask | |
elif maskType == 'Rect': | |
image_mask = face_mask | |
else: | |
image_mask = ((face_mask*hull_mask)) | |
if erosion_kernel is not None: | |
image_mask = cv2.erode(image_mask,erosion_kernel,iterations = 1) | |
if blurSize!=0: | |
image_mask = cv2.blur(image_mask,(blurSize,blurSize)) | |
base_image = numpy.copy( image ) | |
new_image = numpy.copy( image ) | |
cv2.warpAffine( new_face, mat * size, image_size, new_image, cv2.WARP_INVERSE_MAP, cv2.BORDER_TRANSPARENT ) | |
outImage = None | |
if seamlessClone: | |
masky,maskx = cv2.transform( numpy.array([ size/2,size/2 ]).reshape(1,1,2) ,cv2.invertAffineTransform(mat*size) ).reshape(2).astype(int) | |
outimage = cv2.seamlessClone(new_image.astype(numpy.uint8),base_image.astype(numpy.uint8),(image_mask*255).astype(numpy.uint8),(masky,maskx) , cv2.NORMAL_CLONE ) | |
else: | |
foreground = cv2.multiply(image_mask, new_image.astype(float)) | |
background = cv2.multiply(1.0 - image_mask, base_image.astype(float)) | |
outimage = cv2.add(foreground, background) | |
return outimage | |
def main( args ): | |
input_dir = Path( args.input_dir ) | |
assert input_dir.is_dir() | |
alignments = input_dir / args.alignments | |
with alignments.open() as f: | |
alignments = json.load(f) | |
output_dir = input_dir / args.output_dir | |
output_dir.mkdir( parents=True, exist_ok=True ) | |
if args.direction == 'AtoB': autoencoder = autoencoder_B | |
if args.direction == 'BtoA': autoencoder = autoencoder_A | |
if args.erosionKernelSize>0: | |
erosion_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(args.erosionKernelSize,args.erosionKernelSize)) | |
else: | |
erosion_kernel = None | |
for e in alignments: | |
if len(e)<4: | |
raise LookupError('This script expects new format json files with face points included.') | |
for image_file, face_file, mat,facepoints in tqdm( alignments ): | |
image = cv2.imread( str( input_dir / image_file ) ) | |
face = cv2.imread( str( input_dir / face_file ) ) | |
mat = numpy.array(mat).reshape(2,3) | |
if image is None: continue | |
if face is None: continue | |
new_image = convert_one_image( autoencoder, image, mat, facepoints, erosion_kernel, args.blurSize, args.seamlessClone, args.maskType) | |
output_file = output_dir / Path(image_file).name | |
cv2.imwrite( str(output_file), new_image ) | |
def str2bool(v): | |
if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise argparse.ArgumentTypeError('Boolean value expected.') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument( "input_dir", type=str ) | |
parser.add_argument( "alignments", type=str, nargs='?', default='alignments.json' ) | |
parser.add_argument( "output_dir", type=str, nargs='?', default='merged' ) | |
parser.add_argument("--seamlessClone", type=str2bool, nargs='?', const=False, default='False', help="Attempt to use opencv seamlessClone.") | |
parser.add_argument('--maskType', type=str, default='FaceHullAndRect' ,choices=['FaceHullAndRect','FaceHull','Rect'], help="The type of masking to use around the face.") | |
parser.add_argument( "--blurSize", type=int, default='2' ) | |
parser.add_argument( "--erosionKernelSize", type=int, default='0' ) | |
parser.add_argument( "--direction", type=str, default="AtoB", choices=["AtoB", "BtoA"]) | |
main( parser.parse_args() ) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment