Skip to content

Instantly share code, notes, and snippets.

@celoyd
Last active October 4, 2022 11:03
Show Gist options
  • Save celoyd/7443646 to your computer and use it in GitHub Desktop.
Save celoyd/7443646 to your computer and use it in GitHub Desktop.
#!/usr/bin/env python
# ndvi.py red.tif nir.tif output-ndvi.tif
# Calculate NDVI (see Wikipedia). Assumes atmospheric correction.
# (Although I use it without all the time for quick experiments.)
import numpy as np
from sys import argv
from osgeo import gdal, gdalconst
# Type for internal calculations:
t = np.float32
red, nir = map(gdal.Open, argv[1:3])
geotiff = gdal.GetDriverByName('GTiff')
output = geotiff.CreateCopy(argv[3], red, 0)
output = geotiff.Create(
argv[3],
red.RasterXSize, red.RasterYSize,
1,
gdal.GDT_UInt16)
# Ugly syntax, but fast:
r = red.GetRasterBand(1).ReadAsArray(0, 0, red.RasterXSize, red.RasterYSize)
n = nir.GetRasterBand(1).ReadAsArray(0, 0, nir.RasterXSize, nir.RasterYSize)
# Convert the 16-bit Landsat 8 values to floats for the division operation:
r = r.astype(t)
n = n.astype(t)
# Tell numpy not to complain about division by 0:
np.seterr(invalid='ignore')
# Here's the meat of this whole thing, the actual NDVI formula:
ndvi = (n - r)/(n + r)
# The ndvi value is in the range -1..1, but we want it to be displayable, so:
# Make the value positive and scale it back up to the 16-bit range:
ndvi = (ndvi + 1) * (2**15 - 1)
# And do the type conversion back:
ndvi = ndvi.astype(np.uint16)
output.GetRasterBand(1).WriteArray(ndvi)
@balaji1359
Copy link

Could you give me an idea, How could we visualize the NDVI values?

@hblanken
Copy link

hblanken commented Feb 5, 2017

Thanks for this code - works really well. @balaji1359 I am visualising the output with Photoshop, gradient map. Although I am still searching for python code to overlay a color gradient map programatically - anyone knows where to find such code?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment