Skip to content

Instantly share code, notes, and snippets.

@burke
Last active September 4, 2023 01:53
Show Gist options
  • Save burke/6d035758f7492612e2ad86bb7de2d5fb to your computer and use it in GitHub Desktop.
Save burke/6d035758f7492612e2ad86bb7de2d5fb to your computer and use it in GitHub Desktop.
  • grammar_hack.py is completely new;
  • all the other files are minimally modified, with additions marked by #####.
  • Bring your own grammar.ebnf.
  • The LRU cache is very sketchy, but prevented having to plumb through a correct lifetime.
  • Not sure what happens if it gets backed into a corner where there's no valid next state for the state machine.
FROM ghcr.io/huggingface/text-generation-inference:0.8
COPY grammar.ebnf /opt/grammar.ebnf
COPY flash_causal_lm.py /opt/conda/lib/python3.9/site-packages/text_generation_server/models/
COPY flash_llama.py /opt/conda/lib/python3.9/site-packages/text_generation_server/models/
COPY flash_santacoder.py /opt/conda/lib/python3.9/site-packages/text_generation_server/models/
COPY grammar_hack.py /opt/conda/lib/python3.9/site-packages/text_generation_server/
RUN rm /opt/conda/lib/python3.9/site-packages/text_generation_server/models/__pycache__/*
RUN pip install --no-deps torch-grammar==0.3.3
import torch
import torch.distributed
import numpy as np
from torch.nn import functional as F
from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
from typing import Optional, Tuple, List, Type, Union, Dict
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
tracer = trace.get_tracer(__name__)
##### hack-text-generation-inference #####
from text_generation_server.grammar_hack import grammar_hack_prepare, grammar_hack_accept_tokens, grammar_hack_commit
@dataclass
class FlashCausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
# request id -> idx in list mapping
requests_idx_mapping: Dict[int, int]
# Decoder values
input_ids: torch.Tensor
position_ids: torch.Tensor
# cumulative sequence lengths
cu_seqlens: torch.Tensor
# cumulative query sequence lengths, only used in decode
cu_seqlens_q: Optional[torch.Tensor]
# past key values, only used in decode
past_key_values: Optional[torch.Tensor]
max_seqlen: int
# All tokens
all_input_ids: List[List[int]]
all_input_ids_tensor: torch.Tensor
# Lengths of all generations present in the batch
input_lengths: List[int]
prefix_offsets: List[Optional[int]]
read_offsets: List[Optional[int]]
# Generation helpers
next_token_chooser: HeterogeneousNextTokenChooser
stopping_criterias: List[StoppingCriteria]
# Maximum number of tokens this batch will grow to
max_tokens: int
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
) -> "FlashCausalLMBatch":
position_ids = []
cu_seqlens = [0]
max_seqlen = 0
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
requests_idx_mapping = {}
next_token_chooser_parameters = []
stopping_criterias = []
# Cumulative length
cumulative_length = 0
max_tokens = 0
max_length = 0
# Parse batch
for i, r in enumerate(pb.requests):
# request id -> idx in list mapping
requests_idx_mapping[r.id] = i
tokenized_input = tokenizer(
r.inputs, truncation=True, max_length=r.truncate
)["input_ids"]
input_length = len(tokenized_input)
max_seqlen = max(max_seqlen, input_length)
input_lengths.append(input_length)
prefix_offsets.append(0)
read_offsets.append(input_length)
all_input_ids.append(tokenized_input)
# Position ids
position_ids.append(np.arange(0, input_length))
# Add cumulative lengths of all previous inputs
cu_seqlens.append(cumulative_length + input_length)
next_token_chooser_parameters.append(r.parameters)
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
max_new_tokens = stopping_criteria.max_new_tokens
stopping_criterias.append(stopping_criteria)
# Update
cumulative_length += input_length
max_tokens += input_length + max_new_tokens
max_length = max(max_length, input_length + max_new_tokens)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype, device
)
# Padded all_input_ids_tensor
all_input_ids_tensor = np.zeros(
(len(all_input_ids), max_length), dtype=np.int64
)
for i, input_ids in enumerate(all_input_ids):
all_input_ids_tensor[i, : len(input_ids)] = input_ids
# Create tensors on device
input_ids = torch.tensor(
np.concatenate(all_input_ids), dtype=torch.int64, device=device
)
all_input_ids_tensor = torch.tensor(
all_input_ids_tensor, dtype=torch.int64, device=device
)
position_ids = torch.tensor(
np.concatenate(position_ids), dtype=torch.int32, device=device
)
cu_seqlens = torch.tensor(cu_seqlens, device=device, dtype=torch.int32)
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
cu_seqlens_q=None,
max_seqlen=max_seqlen,
past_key_values=None,
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
max_tokens=max_tokens,
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch":
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
# We assume that if len(requests) == len(self) then the requests are the same
if len(request_ids) == len(self):
return self
single_request = len(request_ids) == 1
# Cumulative length
cumulative_length = 0
# New values after filtering
requests_idx_mapping = {}
# Used to index into tensors
indices = []
# Create on CPU to only move to GPU once instead of at every copy
cu_seqlens = torch.zeros(len(request_ids) + 1, dtype=torch.int32)
cu_seqlens_q = self.cu_seqlens_q[: len(request_ids) + 1]
max_seqlen = 0
past_key_values = []
requests = []
all_input_ids = []
input_lengths = []
prefix_offsets = []
read_offsets = []
stopping_criterias = []
max_tokens = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
indices.append(idx)
requests_idx_mapping[request_id] = i
requests.append(self.requests[idx])
# Get length
request_input_length = self.input_lengths[idx]
# Copy to tensor (CPU)
cu_seqlens[i + 1] = cumulative_length + request_input_length
max_seqlen = max(max_seqlen, request_input_length)
# Slice from past
past_key_values.append(
self.past_key_values[:, self.cu_seqlens[idx] : self.cu_seqlens[idx + 1]]
)
all_input_ids.append(self.all_input_ids[idx])
input_lengths.append(request_input_length)
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
cumulative_length += request_input_length
max_tokens += request_input_length + (
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
)
if single_request:
# Preallocate tensor for bs = 1 case
past_key_values = F.pad(
past_key_values[0],
(
0,
0,
0,
0,
0,
0,
0,
stopping_criterias[0].max_new_tokens
- stopping_criterias[0].current_tokens,
),
)
else:
# Cat all past
past_key_values = torch.cat(past_key_values, dim=1)
# Index into tensors
input_ids = self.input_ids[indices]
position_ids = self.position_ids[indices]
all_input_ids_tensor = self.all_input_ids_tensor[indices]
next_token_chooser = self.next_token_chooser.filter(indices)
# Move to GPU now that we have the whole tensor
cu_seqlens = cu_seqlens.to(self.cu_seqlens.device)
return FlashCausalLMBatch(
batch_id=self.batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
cu_seqlens_q=cu_seqlens_q,
max_seqlen=max_seqlen,
past_key_values=past_key_values,
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
max_tokens=max_tokens,
)
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
# Batch attributes
requests = []
requests_idx_mapping = {}
total_batch_size = sum([len(b) for b in batches])
dtype = batches[0].past_key_values.dtype
device = batches[0].input_ids.device
input_ids = batches[0].input_ids.new_empty(total_batch_size)
position_ids = batches[0].position_ids.new_empty(total_batch_size)
cu_seqlens = [0]
cu_seqlens_q = torch.arange(
0, total_batch_size + 1, device=device, dtype=torch.int32
)
max_seqlen = 0
past_key_values = []
all_input_ids = []
input_lengths = []
prefix_offsets = []
read_offsets = []
next_token_chooser_parameters = []
stopping_criterias = []
# Cumulative length
cumulative_batch_size = 0
cumulative_length = 0
max_tokens = 0
max_length = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + cumulative_batch_size
start_index = cumulative_batch_size
end_index = cumulative_batch_size + len(batch)
# Copy tensors (GPU)
input_ids[start_index:end_index] = batch.input_ids
position_ids[start_index:end_index] = batch.position_ids
# Add cumulative lengths of all previous inputs
cu_seqlens.extend([l + cumulative_length for l in batch.cu_seqlens[1:]])
max_seqlen = max(max_seqlen, batch.max_seqlen)
if len(batch) != 1:
past_key_values.append(batch.past_key_values)
else:
# past was pre-allocated for this batch
# We need to slice to remove the padding
past_key_values.append(
batch.past_key_values[:, : batch.input_lengths[0]]
)
all_input_ids.extend(batch.all_input_ids)
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
stopping_criterias.extend(batch.stopping_criterias)
# Update
cumulative_length += batch.cu_seqlens[-1]
cumulative_batch_size += len(batch)
max_tokens += batch.max_tokens
max_length = max(
max_length,
max(
input_length
+ stopping_criteria.max_new_tokens
- stopping_criteria.current_tokens
for input_length, stopping_criteria in zip(
batch.input_lengths, batch.stopping_criterias
)
),
)
all_input_ids_tensor = torch.zeros(
(total_batch_size, max_length), dtype=torch.int64, device=device
)
cumulative_batch_size = 0
for i, batch in enumerate(batches):
start_index = cumulative_batch_size
end_index = cumulative_batch_size + len(batch)
all_input_ids_tensor[
start_index:end_index, : batch.all_input_ids_tensor.shape[1]
] = batch.all_input_ids_tensor[:, :max_length]
cumulative_batch_size += len(batch)
# Cat past
past_key_values = torch.cat(past_key_values, dim=1)
# Create final tensor on GPU
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=device)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
next_token_chooser_parameters, dtype=dtype, device=device
)
return FlashCausalLMBatch(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
cu_seqlens_q=cu_seqlens_q,
max_seqlen=max_seqlen,
past_key_values=past_key_values,
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
next_token_chooser=next_token_chooser,
stopping_criterias=stopping_criterias,
max_tokens=max_tokens,
)
def __len__(self):
return len(self.requests)
class FlashCausalLM(Model):
def __init__(
self,
model_cls: Type[PreTrainedModel],
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
trust_remote_code: bool = False,
):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16
else:
raise NotImplementedError("FlashCausalLM is only available on GPU")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
model = model_cls.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code,
).to(device)
super(FlashCausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=False,
dtype=dtype,
device=device,
)
@property
def batch_type(self) -> Type[FlashCausalLMBatch]:
return FlashCausalLMBatch
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
return self.tokenizer.decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlens: torch.Tensor,
cu_seqlens_q: Optional[torch.Tensor],
max_s: int,
past_key_values: Optional = None,
pre_allocate_past_size: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Model Forward
return self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlens=cu_seqlens,
cu_seqlens_q=cu_seqlens_q,
max_s=max_s,
past_key_values=past_key_values,
pre_allocate_past_size=pre_allocate_past_size,
)
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: FlashCausalLMBatch
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
prefill = batch.past_key_values is None
single_request = len(batch) == 1
if prefill and len(batch) == 1:
# Ask to pre-allocate kv to its max size
# == number of tokens + max_new_tokens
pre_allocate_past_size = (
batch.input_lengths[0] + batch.stopping_criterias[0].max_new_tokens
)
else:
pre_allocate_past_size = None
out, present = self.forward(
batch.input_ids,
batch.position_ids,
batch.cu_seqlens,
batch.cu_seqlens_q,
batch.max_seqlen,
batch.past_key_values,
pre_allocate_past_size,
)
##### hack-text-generation-inference #####
idx_stacks = grammar_hack_prepare(batch.requests_idx_mapping, self.stackstore, self.grammar)
if prefill:
next_token_logits = (
out[-1:] if single_request else out[batch.cu_seqlens[1:] - 1]
)
else:
##### hack-text-generation-inference #####
grammar_hack_accept_tokens(self.grammar, batch.input_ids, idx_stacks)
next_token_logits = out
##### hack-text-generation-inference #####
grammar_hack_commit(self.grammar, self.stackstore, idx_stacks, batch.requests_idx_mapping, next_token_logits)
next_input_ids, next_token_logprobs = batch.next_token_chooser(
batch.all_input_ids_tensor[:, : batch.max_seqlen], next_token_logits
)
if prefill:
if len(batch) > 1:
# We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
# When batch == 1, we will just use the batch.input_ids values directly
prefill_tokens_indices = batch.input_ids.new_zeros(len(batch.input_ids))
# Create batch.cu_seqlens_q for decode
batch.cu_seqlens_q = torch.arange(
0, len(batch) + 1, device=self.device, dtype=torch.int32
)
next_position_ids = batch.position_ids.new_empty(len(batch))
else:
prefill_logprobs = None
next_position_ids = batch.position_ids
# Prepare past for next decode
if len(batch) > 1:
# Used to slice next batch past
past_indices = torch.empty(
present.shape[1], dtype=torch.int64, device=self.device
)
batch.past_key_values = present.new_empty(
(
present.shape[0],
present.shape[1] + len(batch.requests),
*present.shape[2:],
)
)
# It is actually faster to do a whole other for loop here as the copy from present to past is fairly slow
# and will run asynchronously while we do the next for loop
cumulative_length = 0
for i, input_length in enumerate(batch.input_lengths):
# Indexing metadata
start_index = cumulative_length
end_index = cumulative_length + input_length
# Indices to copy present at the correct place in past_key_values
torch.arange(
start_index + i,
end_index + i,
dtype=torch.int64,
device=self.device,
out=past_indices[start_index:end_index],
)
cumulative_length += input_length
# Copy from present to past_key_values
batch.past_key_values[:, past_indices] = present
# Initialize past_key_values in prefill for len(batch) == 1
elif prefill:
# present is already pre-padded
batch.past_key_values = present
# Cumulative length
cumulative_length = 0
# Results
generations: List[Generation] = []
stopped = True
# Zipped iterator
iterator = zip(
batch.input_lengths,
batch.stopping_criterias,
batch.all_input_ids,
)
# We do two for loops as the first one can run completely asynchronously from the GPU while for the second
# one, we need to first do a GPU <-> CPU sync
# It is faster if we delay this sync for the maximum amount of time
# For each member of the batch
for i, (
input_length,
stopping_criteria,
all_input_ids,
) in enumerate(iterator):
# Indexing metadata
start_index = cumulative_length
end_index = cumulative_length + input_length
if prefill:
# Initialize position_ids
# In decode, we do not need this as we can just increment position ids
next_position_ids[i] = batch.position_ids[end_index - 1]
# Used to gather prefill logprobs
# Copy batch.input_ids to prefill_token_indices
if len(batch) > 1:
prefill_tokens_indices[
start_index : end_index - 1
] = batch.input_ids[start_index + 1 : end_index]
else:
# Set prefill_tokens_indices to the correct slice
prefill_tokens_indices = batch.input_ids[
start_index + 1 : end_index
]
batch.all_input_ids_tensor[i, input_length] = next_input_ids[i]
cumulative_length += input_length
# Set values in batch
batch.input_ids = next_input_ids
batch.position_ids = next_position_ids + 1
batch.cu_seqlens = batch.cu_seqlens + batch.cu_seqlens_q
if prefill:
# Get prefill logprobs
prefill_logprobs_tensor = torch.log_softmax(out, -1)
prefill_logprobs = torch.gather(
prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
)
# GPU <-> CPU sync
prefill_logprobs = prefill_logprobs.view(-1).tolist()
# GPU <-> CPU sync
next_token_logprobs = next_token_logprobs.tolist()
next_token_ids = batch.input_ids.tolist()
cumulative_length = 0
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
batch.stopping_criterias,
batch.all_input_ids,
batch.all_input_ids_tensor,
batch.next_token_chooser.do_sample,
batch.next_token_chooser.seeds,
next_token_ids,
next_token_logprobs,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
stopping_criteria,
all_input_ids,
all_input_ids_tensor,
do_sample,
seed,
next_token_id,
next_token_logprob,
) in enumerate(iterator):
start_index = cumulative_length
end_index = cumulative_length + input_length
# Append next token to all tokens
all_input_ids.append(next_token_id)
# Generated token
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids,
prefix_offset,
read_offset,
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id,
next_token_text,
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[-stopping_criteria.current_tokens :]
)
generated_text = GeneratedText(
output_text,
stopping_criteria.current_tokens,
reason,
seed if do_sample else None,
)
else:
generated_text = None
# Prefill
if prefill:
# Remove generated token to only have prefill and add nan for first prompt token
request_prefill_logprobs = [float("nan")] + prefill_logprobs[
start_index : end_index - 1
]
prefill_token_ids = all_input_ids[:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(
prefill_token_ids, request_prefill_logprobs, prefill_texts
)
else:
prefill_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id,
next_token_logprob,
next_token_text,
next_token_id in self.all_special_ids,
generated_text,
)
generations.append(generation)
new_input_length = input_length + 1
# Update values
batch.input_lengths[i] = new_input_length
batch.prefix_offsets[i] = prefix_offset
batch.read_offsets[i] = read_offset
batch.all_input_ids[i] = all_input_ids
cumulative_length += input_length
batch.max_seqlen = batch.max_seqlen + 1
# No need to return a batch if we know that all requests stopped
return generations, batch if not stopped else None
import torch
import torch.distributed
from accelerate import init_empty_weights
from opentelemetry import trace
from pathlib import Path
from safetensors import safe_open
from transformers import AutoConfig
from transformers.models.llama import LlamaTokenizer
from typing import Optional, List
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
TensorParallelEmbedding,
TensorParallelRowLinear,
TensorParallelColumnLinear,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
download_weights,
weight_hub_files,
LocalEntryNotFoundError,
)
tracer = trace.get_tracer(__name__)
##### hack-text-generation-inference #####
from text_generation_server.grammar_hack import grammar_hack_init
class FlashLlama(FlashCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
trust_remote_code: bool = False,
):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16
else:
raise NotImplementedError("FlashLlama is only available on GPU")
tokenizer = LlamaTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = AutoConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
# We do not use from_pretrained as we modified the model internal module layout
try:
filenames = weight_files(model_id, revision, ".bin")
# Local files not found
except LocalEntryNotFoundError:
hub_files = weight_hub_files(model_id, revision, ".bin")
filenames = download_weights(hub_files, model_id, revision)
with init_empty_weights():
model = FlashLlamaForCausalLM(config)
self.load_weights(model, filenames, quantize, device, dtype)
super(FlashCausalLM, self).__init__(
model=model.to(device),
tokenizer=tokenizer,
requires_padding=False,
dtype=dtype,
device=device,
)
@staticmethod
def load_weights(
model,
filenames: List[Path],
quantize: Optional[str],
device: torch.device,
dtype: torch.dtype,
):
for filename in filenames:
state_dict = torch.load(filename, map_location="cpu")
for key, value in state_dict.items():
value = value.to(device if quantize is None else "cpu").to(dtype)
layer_name = ".".join(key.split(".")[:4])
# Fused qkv
if "q_proj" in key or "k_proj" in key or "v_proj" in key:
final_key = layer_name + ".query_key_value.weight"
# Fused gate and up projs
elif "gate_proj" in key or "up_proj" in key:
final_key = layer_name + ".gate_up_proj.weight"
else:
final_key = key
module_name, param_name = final_key.rsplit(".", 1)
module = model.get_submodule(module_name)
try:
current_parameter_tensor = module._parameters[param_name]
except KeyError:
current_parameter_tensor = None
if current_parameter_tensor is not None:
if current_parameter_tensor.device == torch.device("meta"):
# Init qkv
if "query_key_value" in final_key:
module._parameters[param_name] = value.new_empty(
(value.shape[0] * 3, value.shape[1])
)
# Init gate and up proj
elif "gate_up_proj" in final_key:
module._parameters[param_name] = value.new_empty(
(value.shape[0] * 2, value.shape[1])
)
# Copy to correct slice
if "q_proj" in key:
module._parameters[param_name][: value.shape[0]] = value
elif "k_proj" in key:
module._parameters[param_name][
value.shape[0] : value.shape[0] * 2
] = value
elif "v_proj" in key:
module._parameters[param_name][value.shape[0] * 2 :] = value
elif "gate_proj" in key:
module._parameters[param_name][: value.shape[0]] = value
elif "up_proj" in key:
module._parameters[param_name][value.shape[0] :] = value
else:
if current_parameter_tensor.shape != value.shape:
raise ValueError(
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
)
module._parameters[param_name] = value
else:
module._buffers[param_name] = value
del value
torch.cuda.empty_cache()
model.post_load_weights(quantize)
class FlashLlamaSharded(FlashLlama):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16
else:
raise NotImplementedError("FlashLlama is only available on GPU")
tokenizer = LlamaTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = AutoConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
with init_empty_weights():
model = FlashLlamaForCausalLM(config, process_group=self.process_group)
torch.distributed.barrier(group=self.process_group)
self.load_weights(
model,
filenames,
quantize=quantize,
device=device,
dtype=dtype,
rank=rank,
world_size=world_size,
)
torch.distributed.barrier(group=self.process_group)
##### hack-text-generation-inference #####
self.grammar, self.stackstore = grammar_hack_init(tokenizer)
super(FlashCausalLM, self).__init__(
model=model.to(device),
tokenizer=tokenizer,
requires_padding=False,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)
@staticmethod
def load_weights(
model,
filenames: List[str],
quantize: Optional[str],
device: torch.device,
dtype: torch.dtype,
rank: int,
world_size: int,
):
for file in filenames:
with safe_open(
file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f:
for name in f.keys():
slice_ = f.get_slice(name)
layer_name = ".".join(name.split(".")[:4])
# Fused qkv
if "q_proj" in name or "k_proj" in name or "v_proj" in name:
final_name = layer_name + ".query_key_value.weight"
# Fused gate and up projs
elif "gate_proj" in name or "up_proj" in name:
final_name = layer_name + ".gate_up_proj.weight"
else:
final_name = name
module_name, param_name = final_name.rsplit(".", 1)
module = model.get_submodule(module_name)
if isinstance(module, TensorParallelColumnLinear):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif isinstance(module, TensorParallelRowLinear):
size = slice_.get_shape()[1]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[:, start:stop]
elif isinstance(module, TensorParallelEmbedding):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif name == "lm_head.weight" and model.model.tp_embeddings:
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
else:
try:
tensor = slice_[:]
except:
tensor = f.get_tensor(name)
tensor = tensor.contiguous().to(dtype)
try:
current_parameter_tensor = module._parameters[param_name]
except KeyError:
current_parameter_tensor = None
if current_parameter_tensor is not None:
if current_parameter_tensor.device == torch.device("meta"):
# Init qkv
if "query_key_value" in final_name:
module._parameters[param_name] = tensor.new_empty(
(tensor.shape[0] * 3, tensor.shape[1])
)
# Init gate and up proj
elif "gate_up_proj" in final_name:
module._parameters[param_name] = tensor.new_empty(
(tensor.shape[0] * 2, tensor.shape[1])
)
# Init gate and up proj
if "q_proj" in name:
module._parameters[param_name][: tensor.shape[0]] = tensor
elif "k_proj" in name:
module._parameters[param_name][
tensor.shape[0] : tensor.shape[0] * 2
] = tensor
elif "v_proj" in name:
module._parameters[param_name][
tensor.shape[0] * 2 :
] = tensor
elif "gate_proj" in name:
module._parameters[param_name][: tensor.shape[0]] = tensor
elif "up_proj" in name:
module._parameters[param_name][tensor.shape[0] :] = tensor
else:
if current_parameter_tensor.shape != tensor.shape:
raise ValueError(
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
)
module._parameters[param_name] = tensor
else:
module._buffers[param_name] = tensor
torch.cuda.empty_cache()
model.post_load_weights(quantize)
import torch
import torch.distributed
from accelerate import init_empty_weights
from opentelemetry import trace
from safetensors import safe_open
from pathlib import Path
from transformers import AutoTokenizer, GPT2Config
from typing import Optional, List
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
FlashSantacoderForCausalLM,
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
download_weights,
weight_hub_files,
LocalEntryNotFoundError,
)
tracer = trace.get_tracer(__name__)
##### hack-text-generation-inference #####
from text_generation_server.grammar_hack import grammar_hack_init
class FlashSantacoder(FlashCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
trust_remote_code: bool = False,
):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16
else:
raise NotImplementedError("FlashSantacoder is only available on GPU")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = GPT2Config.from_pretrained(
model_id,
revision=revision,
)
# We do not use from_pretrained as we modified the model internal module layout
filenames = weight_files(model_id, revision, ".safetensors")
with init_empty_weights():
model = FlashSantacoderForCausalLM(config)
self.load_weights(
model,
filenames,
quantize,
device,
dtype,
config.architectures[0].startswith("GPT2"),
)
super(FlashCausalLM, self).__init__(
model=model.to(device),
tokenizer=tokenizer,
requires_padding=False,
dtype=dtype,
device=device,
)
@staticmethod
def load_weights(
model: FlashSantacoderForCausalLM,
filenames: List[Path],
quantize: Optional[str],
device: torch.device,
dtype: torch.dtype,
transpose: bool,
):
for filename in filenames:
with safe_open(
filename,
framework="pt",
device=str(device) if quantize is None else "cpu",
) as f:
for key in f.keys():
value = f.get_tensor(key)
value = value.to(device if quantize is None else "cpu").to(dtype)
layer_name = ".".join(key.split(".")[:4])
# Fused qkv
if "q_attn.weight" in key or "kv_attn.weight" in key:
final_key = layer_name + ".c_attn.weight"
elif "q_attn.bias" in key or "kv_attn.bias" in key:
final_key = layer_name + ".c_attn.bias"
else:
final_key = key
module_name, param_name = final_key.rsplit(".", 1)
module = model.get_submodule(module_name)
try:
current_parameter_tensor = module._parameters[param_name]
except KeyError:
current_parameter_tensor = None
if current_parameter_tensor is not None:
if transpose and (
"c_fc.weight" in key
or "c_proj.weight" in key
or "q_attn.weight" in key
or "kv_attn.weight" in key
or "c_attn.weight" in key
):
# Tranpose as we use nn.Linear instead of Conv1D
value = value.T
if current_parameter_tensor.device == torch.device("meta"):
# Init qkv
if "c_attn.weight" in final_key:
module._parameters[param_name] = value.new_empty(
(
model.transformer.head_size
* (model.transformer.num_heads + 2),
value.shape[1],
)
)
elif "c_attn.bias" in final_key:
module._parameters[param_name] = value.new_empty(
(
model.transformer.head_size
* (model.transformer.num_heads + 2)
)
)
# Copy to correct slice
if "q_attn.weight" in key:
module._parameters[param_name][: value.shape[0]] = value
elif "q_attn.bias" in key:
module._parameters[param_name][: value.shape[0]] = value
elif "kv_attn.weight" in key:
module._parameters[param_name][
model.transformer.head_size
* model.transformer.num_heads :
] = value
elif "kv_attn.bias" in key:
module._parameters[param_name][
model.transformer.head_size
* model.transformer.num_heads :
] = value
else:
if current_parameter_tensor.shape != value.shape:
raise ValueError(
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
)
module._parameters[param_name] = value
else:
module._buffers[param_name] = value
del value
if model.lm_head.weight.device == torch.device("meta"):
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
torch.cuda.empty_cache()
model.post_load_weights(quantize)
uninitialized_parameters = []
for n, p in model.named_parameters():
if p.data.device == torch.device("meta"):
uninitialized_parameters.append(n)
if uninitialized_parameters:
raise RuntimeError(
f"found uninitialized parameters in model : {uninitialized_parameters}"
)
def decode(self, generated_ids: List[int]) -> str:
# Do not skip special tokens as they are used for custom parsing rules of the generated text
return self.tokenizer.decode(
generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
class FlashSantacoderSharded(FlashSantacoder):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16
else:
raise NotImplementedError("FlashSantacoderSharded is only available on GPU")
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = GPT2Config.from_pretrained(
model_id,
revision=revision,
)
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
with init_empty_weights():
model = FlashSantacoderForCausalLM(config, self.process_group)
torch.distributed.barrier(group=self.process_group)
self.load_weights(
model,
filenames,
quantize=quantize,
device=device,
dtype=dtype,
rank=rank,
world_size=world_size,
transpose=config.architectures[0].startswith("GPT2"),
)
torch.distributed.barrier(group=self.process_group)
##### hack-text-generation-inference #####
self.grammar, self.stackstore = grammar_hack_init(tokenizer)
super(FlashCausalLM, self).__init__(
model=model.to(device),
tokenizer=tokenizer,
requires_padding=False,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)
@staticmethod
def load_weights(
model,
filenames: List[str],
quantize: Optional[str],
device: torch.device,
dtype: torch.dtype,
rank: int,
world_size: int,
transpose: bool,
):
for file in filenames:
with safe_open(
file, framework="pt", device=str(device) if quantize is None else "cpu"
) as f:
for key in f.keys():
slice_ = f.get_slice(key)
layer_name = ".".join(key.split(".")[:4])
# Fused qkv
if "q_attn.weight" in key or "kv_attn.weight" in key:
final_key = layer_name + ".c_attn.weight"
elif "q_attn.bias" in key or "kv_attn.bias" in key:
final_key = layer_name + ".c_attn.bias"
else:
final_key = key
module_name, param_name = final_key.rsplit(".", 1)
module = model.get_submodule(module_name)
if isinstance(module, TensorParallelColumnLinear):
dim = 1 if transpose and "weight" in param_name else 0
size = slice_.get_shape()[dim]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = (
slice_[start:stop] if dim == 0 else slice_[:, start:stop]
)
elif isinstance(module, TensorParallelRowLinear):
if param_name == "weight":
dim = 0 if transpose else 1
size = slice_.get_shape()[dim]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = (
slice_[start:stop]
if dim == 0
else slice_[:, start:stop]
)
else:
tensor = slice_[:]
# XXX: Hack for Rowlinear to add the bias only once.
if rank != 0:
tensor = torch.zeros_like(tensor)
elif isinstance(module, TensorParallelEmbedding):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif key == "lm_head.weight" and model.transformer.tp_embeddings:
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
else:
try:
tensor = slice_[:]
except:
tensor = f.get_tensor(key)
tensor = tensor.contiguous().to(dtype)
try:
current_parameter_tensor = module._parameters[param_name]
except KeyError:
current_parameter_tensor = None
if current_parameter_tensor is not None:
if transpose and (
"c_fc.weight" in key
or "c_proj.weight" in key
or "q_attn.weight" in key
or "kv_attn.weight" in key
or "c_attn.weight" in key
):
# Tranpose as we use nn.Linear instead of Conv1D
tensor = tensor.T
if current_parameter_tensor.device == torch.device("meta"):
# Init qkv
if "c_attn.weight" in final_key:
module._parameters[param_name] = tensor.new_empty(
(
model.transformer.head_size
* (model.transformer.num_heads + 2),
tensor.shape[1],
)
)
elif "c_attn.bias" in final_key:
module._parameters[param_name] = tensor.new_empty(
(
model.transformer.head_size
* (model.transformer.num_heads + 2)
)
)
# Copy to correct slice
if "q_attn" in key:
size = tensor.shape[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = tensor[start:stop]
module._parameters[param_name][: tensor.shape[0]] = tensor
elif "kv_attn.weight" in key:
module._parameters[param_name][
model.transformer.head_size
* model.transformer.num_heads :
] = tensor
elif "kv_attn.bias" in key:
module._parameters[param_name][
model.transformer.head_size
* model.transformer.num_heads :
] = tensor
elif "c_attn" in key:
# Slice q_tensor by shard
q_tensor = tensor[: -2 * model.transformer.head_size]
block_size = q_tensor.shape[0] // world_size
start = rank * block_size
stop = (rank + 1) * block_size
q_tensor = q_tensor[start:stop]
module._parameters[param_name][
: q_tensor.shape[0]
] = q_tensor
# Kv tensor is copied for every shard
kv_tensor = tensor[-2 * model.transformer.head_size :]
module._parameters[param_name][
q_tensor.shape[0] :
] = kv_tensor
else:
if current_parameter_tensor.shape != tensor.shape:
raise ValueError(
f"Name {key} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
)
module._parameters[param_name] = tensor
else:
module._buffers[param_name] = tensor
if model.lm_head.weight.device == torch.device("meta"):
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
torch.cuda.empty_cache()
model.post_load_weights(quantize)
import collections
from torch_grammar import GrammarSampler
class LRUCache:
def __init__(self, capacity):
self.capacity = capacity
self.cache = collections.OrderedDict()
def get(self, key):
try:
value = self.cache.pop(key)
self.cache[key] = value
return value
except KeyError:
return -1
def set(self, key, value):
try:
self.cache.pop(key)
except KeyError:
if len(self.cache) >= self.capacity:
self.cache.popitem(last=False)
self.cache[key] = value
def grammar_hack_init(tokenizer):
with open("/opt/grammar.ebnf", "r") as f:
ebnf = f.read()
grammar = GrammarSampler(ebnf, "root", tokenizer)
stackstore = LRUCache(10000)
return grammar, stackstore
def grammar_hack_prepare(requests_idx_mapping, stackstore, grammar):
request_ids = [None] * len(requests_idx_mapping)
idx_stacks = [None] * len(requests_idx_mapping)
for _, (request_id, idx) in enumerate(requests_idx_mapping.items()):
request_ids[idx] = request_id
stacks = stackstore.get(request_id)
if stacks == -1:
stacks = grammar.init_stacks()
idx_stacks[idx] = stacks
return idx_stacks
def grammar_hack_accept_tokens(grammar, input_ids, idx_stacks):
for idx, input_id in enumerate(input_ids):
idx_stacks[idx] = grammar.accept_token(input_id, idx_stacks[idx])
def grammar_hack_commit(grammar, stackstore, idx_stacks, requests_idx_mapping, next_token_logits):
for idx, stack in enumerate(idx_stacks):
grammar.filter_logits(next_token_logits[idx], stack, next_token_logits.device)
for _, (request_id, idx) in enumerate(requests_idx_mapping.items()):
stackstore.set(request_id, idx_stacks[idx])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment