Skip to content

Instantly share code, notes, and snippets.

@biboudis
Last active December 8, 2020 00:02
Show Gist options
  • Save biboudis/d34fa690340a674805a7fde7a07ffac1 to your computer and use it in GitHub Desktop.
Save biboudis/d34fa690340a674805a7fde7a07ffac1 to your computer and use it in GitHub Desktop.
Breadth-first labeling via queue/zipper in Scala
import org.junit.Test
import org.junit.Assert._
import scala.util.chaining._
import scala.collection.mutable.ListBuffer
import scala.language.implicitConversions
// Breadth-first labeling -- http://okmij.org/ftp/Algorithms/BFN.html
// Breadth-First Numbering: An Algorithm in Pictures -- https://okasaki.blogspot.com/2008/07/breadth-first-numbering-algorithm-in.html
// The Under-Appreciated Unfold -- https://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/unfold.ps.gz
class BFNTest {
def [A, B](a: A) |> (f: (A) => B): B = a.pipe(f)
def map[A, B](f: A => B)(s: List[A]): List[B] = {
s match {
case Nil => Nil
case h::t =>
val hh: B = f(h)
val tt = map(f)(t)
hh :: tt
}
}
def map_accum[A, B, Z](f: Z => A => (Z, B))(z: Z)(s: List[A]): (Z, List[B]) = {
s match {
case Nil => (z, Nil)
case h::t =>
val (newState, hh): (Z, B) = f(z)(h)
val (newState2, tt) = map_accum(f)(newState)(t)
(newState2, hh :: tt)
}
}
def ilabeling[A](z: Int)(x: A): (Int, (Int, A)) = (z + 1, (z, x))
def list_lab[A](i: Int, l: List[A]): List[(Int, A)] = {
map_accum[A, (Int, A), Int](ilabeling)(i)(l)._2
}
@Test def list_lab_test() = {
val res = list_lab(101, List(2,3,5,7,11))
assert(res == List((101,2), (102,3), (103,5), (104,7), (105,11)))
}
enum Tree[A] {
case Leaf(a: A)
case Node(a: A, left: Tree[A], right: Tree[A])
}
import Tree._
def tree_map[A, B](f: A => B)(t1: Tree[A]): Tree[B] = t1 match {
case Leaf(a) => Leaf(f(a))
case Node(a, l, r) => Node(f(a), tree_map(f)(l), tree_map(f)(r))
}
// processing the root from a list of trees each time (traversal 1#)
def bfi_forest1[A](f: A => Unit)(l: List[Tree[A]]): Unit = l match {
case scala.Nil => ()
case forest => {
def iterF(t: Tree[A]): Unit = t match {
case Leaf(a) => f(a)
case Node(a, _, _) => f(a)
}
forest.foreach(iterF)
// prunes the tree level by level (traversal 2#)
def nodeList(t: Tree[A]) = t match {
case Leaf(_) => scala.Nil
case Node(_, l, r) => (l :: r :: scala.Nil)
}
// all trees are passed by recursing on the level each time
forest.map(nodeList).flatten |> bfi_forest1(f)
}
}
def bfi1[A](f: A => Unit)(l: Tree[A]): Unit = {
bfi_forest1(f)(List(l))
}
// notice the manual fusion that occurs:
// the processing with `f` is happening during visitation
// each level is processed sequentially from left to right added on the list in reverse order (LIFO (r))
def bfi_forest2[A](f: A => Unit)(lp: (List[Tree[A]], List[Tree[A]])): Unit = lp match {
case (scala.Nil, scala.Nil) => ()
case (scala.Nil, next) => bfi_forest2(f)((next.reverse, List()))
case (Leaf(x) :: t, next) => f(x); bfi_forest2(f)((t, next)) // <-- why not rebuilt the tree here?
case (Node(x, l, r) :: t, next) => f(x); bfi_forest2(f)((t, r :: l :: next))
}
def bfi2[A](f: A => Unit)(l: Tree[A]): Unit = {
bfi_forest2(f)(List(l), List())
}
def bf_fold_left[Z,A](f: Z => A => Z)(z: Z)(t: Tree[A]): Z = {
var zr = z
bfi_forest2((x) => f(zr)(x))(List(t), List())
zr
}
def bfa_naive[A, B](f: A => B)(t: Tree[A]): Tree[B] = {
case class Ref[B](var s: Option[B])
// Map the tree with refcells in a DFS manner
val tree_s: Tree[(Ref[B], A)] = tree_map[A, (Ref[B], A)](x => (Ref[B](None), x))(t)
// Traverse in BFS manner + mutation
bfi2[(Ref[B], A)]((rf, x) => rf.s = Some(f(x)))(tree_s)
// Rebuilding in a DFS manner
tree_map[(Ref[B], A), B](x => x._1.s.get)(tree_s)
}
// revisiting the "fused" version above
// def bfi_forest2[A](f: A => Unit)(lp: (List[Tree[A]], List[Tree[A]])): Unit
type ForestZipper[A] = (List[Tree[A]], List[Tree[A]])
// The idea is that we will construct the list of trees simultaneously and we will end up with a tree of the same shape
def bfi_forest3[A, B](f: A => B)(lp: ForestZipper[A]): ForestZipper[B] = lp match {
case (scala.Nil, scala.Nil) =>
(scala.Nil, scala.Nil)
case (scala.Nil, next) =>
val (next_r, scala.Nil) = bfi_forest3(f)((next.reverse, List()))
(scala.Nil, next_r.reverse)
case (Leaf(x) :: t, next) =>
val v = f(x)
val (t_, next_) = bfi_forest3(f)((t, next))
(Leaf(v) :: t_, next_)
case (Node(x, l, r) :: t, next) =>
val v = f(x)
val (t_, r_ :: l_ :: next_) = bfi_forest3(f)((t, r :: l :: next))
(Node(v, l_, r_) :: t_, next_)
}
def bfa3[A, B](f: A => B)(t: Tree[A]): Tree[B] = {
bfi_forest3(f)(List(t), List())._1(0)
}
val t = Node (1, Node (2, Leaf (3),
Node (4, Leaf (5),
Leaf (6))),
Node (12, Node (14, Leaf (15),
Leaf (16)),
Leaf (13)))
@Test def bfi_forest1_test() = {
val res = ListBuffer[Int]()
List(t) |> bfi_forest1[Int]((a: Int) => res += a)
assert(res == List(1, 2, 12, 3, 4, 14, 13, 5, 6, 15, 16))
}
@Test def bf_fold_left_test() = {
val res = bf_fold_left[ListBuffer[Int], Int](z => a => z += a)(ListBuffer[Int]())(t)
assert(res == List(1, 2, 12, 3, 4, 14, 13, 5, 6, 15, 16))
}
@Test def bfa3_test() = {
val res = bfa3[Int, Int](x => x + 1)(t)
|> bf_fold_left[ListBuffer[Int], Int](z => a => z += a)(ListBuffer[Int]())
assert(res == List(2, 3, 13, 4, 5, 15, 14, 6, 7, 16, 17))
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment