Last active
November 30, 2018 11:52
-
-
Save biboudis/52fa07ba3ea1abc7ce20 to your computer and use it in GitHub Desktop.
Shift/Reset Java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package builders; | |
import java.util.function.Function; | |
public class Cont { | |
interface K<A, B, C> extends Function<Function<A, B>, C>{ } | |
/* | |
* Step 1: https://en.wikibooks.org/wiki/Haskell/Continuation_passing_style | |
* ---> just transforming continuations of type (a->r)->r to polymorphic (a->b)->c | |
* Step 2: http://infoscience.epfl.ch/record/149136/files/icfp113-rompf.pdf (chapter 3.1) | |
* */ | |
static class Shift<A, B, C> { | |
K<A, B, C> s; | |
/* | |
* (previous and not parametric on the return types) | |
* cont :: ((a -> b) -> c) -> Shift a b c | |
*/ | |
public Shift(K<A, B, C> s) { | |
super(); | |
this.s = s; | |
} | |
/* | |
* (previous and not parametric on the return types) | |
* bind :: ((a -> b) -> c) -> (a -> ((a1 -> b1) -> c1)) -> ((a1 -> b1) -> c) | |
* bind s f = \k -> s $ \x -> f x $ k | |
*/ | |
public <A1, B1, C1 extends B> Shift<A1, B1, C> bind(Function<A, K<A1, B1, C1>> f) { | |
return new Shift<A1, B1, C>((Function<A1, B1> k) -> s.apply((A x) -> (f.apply(x)).apply(k))); | |
} | |
/* | |
* map (essentially bind + unit) | |
* */ | |
public <A1> Shift<A1, B, C> map (Function<A, A1> f) { | |
return new Shift<A1, B, C>((Function<A1, B> k) -> s.apply((A x) -> k.apply(f.apply(x)))); | |
} | |
static <A, C> void reset(Shift<A, A, C> c) { | |
c.s.apply(x -> x); | |
} | |
} | |
public static void main(String[] args) { | |
Shift<Integer, Integer, Integer> ctx = new Shift<Integer, Integer, Integer>((Function<Integer, Integer> k) -> k.apply(k.apply(k.apply((7))))) | |
.map(x -> { | |
int res = x + 1; | |
System.out.println(res); | |
return res; | |
}); | |
Shift.reset(ctx); // 10 | |
} | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment