-
-
Save bellbind/1414867 to your computer and use it in GitHub Desktop.
# Basics of Elliptic Curve Cryptography implementation on Python | |
import collections | |
def inv(n, q): | |
"""div on PN modulo a/b mod q as a * inv(b, q) mod q | |
>>> assert n * inv(n, q) % q == 1 | |
""" | |
for i in range(q): | |
if (n * i) % q == 1: | |
return i | |
pass | |
assert False, "unreached" | |
pass | |
def sqrt(n, q): | |
"""sqrt on PN modulo: returns two numbers or exception if not exist | |
>>> assert (sqrt(n, q)[0] ** 2) % q == n | |
>>> assert (sqrt(n, q)[1] ** 2) % q == n | |
""" | |
assert n < q | |
for i in range(1, q): | |
if i * i % q == n: | |
return (i, q - i) | |
pass | |
raise Exception("not found") | |
Coord = collections.namedtuple("Coord", ["x", "y"]) | |
class EC(object): | |
"""System of Elliptic Curve""" | |
def __init__(self, a, b, q): | |
"""elliptic curve as: (y**2 = x**3 + a * x + b) mod q | |
- a, b: params of curve formula | |
- q: prime number | |
""" | |
assert 0 < a and a < q and 0 < b and b < q and q > 2 | |
assert (4 * (a ** 3) + 27 * (b ** 2)) % q != 0 | |
self.a = a | |
self.b = b | |
self.q = q | |
# just as unique ZERO value representation for "add": (not on curve) | |
self.zero = Coord(0, 0) | |
pass | |
def is_valid(self, p): | |
if p == self.zero: return True | |
l = (p.y ** 2) % self.q | |
r = ((p.x ** 3) + self.a * p.x + self.b) % self.q | |
return l == r | |
def at(self, x): | |
"""find points on curve at x | |
- x: int < q | |
- returns: ((x, y), (x,-y)) or not found exception | |
>>> a, ma = ec.at(x) | |
>>> assert a.x == ma.x and a.x == x | |
>>> assert a.x == ma.x and a.x == x | |
>>> assert ec.neg(a) == ma | |
>>> assert ec.is_valid(a) and ec.is_valid(ma) | |
""" | |
assert x < self.q | |
ysq = (x ** 3 + self.a * x + self.b) % self.q | |
y, my = sqrt(ysq, self.q) | |
return Coord(x, y), Coord(x, my) | |
def neg(self, p): | |
"""negate p | |
>>> assert ec.is_valid(ec.neg(p)) | |
""" | |
return Coord(p.x, -p.y % self.q) | |
def add(self, p1, p2): | |
"""<add> of elliptic curve: negate of 3rd cross point of (p1,p2) line | |
>>> d = ec.add(a, b) | |
>>> assert ec.is_valid(d) | |
>>> assert ec.add(d, ec.neg(b)) == a | |
>>> assert ec.add(a, ec.neg(a)) == ec.zero | |
>>> assert ec.add(a, b) == ec.add(b, a) | |
>>> assert ec.add(a, ec.add(b, c)) == ec.add(ec.add(a, b), c) | |
""" | |
if p1 == self.zero: return p2 | |
if p2 == self.zero: return p1 | |
if p1.x == p2.x and (p1.y != p2.y or p1.y == 0): | |
# p1 + -p1 == 0 | |
return self.zero | |
if p1.x == p2.x: | |
# p1 + p1: use tangent line of p1 as (p1,p1) line | |
l = (3 * p1.x * p1.x + self.a) * inv(2 * p1.y, self.q) % self.q | |
pass | |
else: | |
l = (p2.y - p1.y) * inv(p2.x - p1.x, self.q) % self.q | |
pass | |
x = (l * l - p1.x - p2.x) % self.q | |
y = (l * (p1.x - x) - p1.y) % self.q | |
return Coord(x, y) | |
def mul(self, p, n): | |
"""n times <mul> of elliptic curve | |
>>> m = ec.mul(p, n) | |
>>> assert ec.is_valid(m) | |
>>> assert ec.mul(p, 0) == ec.zero | |
""" | |
r = self.zero | |
m2 = p | |
# O(log2(n)) add | |
while 0 < n: | |
if n & 1 == 1: | |
r = self.add(r, m2) | |
pass | |
n, m2 = n >> 1, self.add(m2, m2) | |
pass | |
# [ref] O(n) add | |
#for i in range(n): | |
# r = self.add(r, p) | |
# pass | |
return r | |
def order(self, g): | |
"""order of point g | |
>>> o = ec.order(g) | |
>>> assert ec.is_valid(a) and ec.mul(a, o) == ec.zero | |
>>> assert o <= ec.q | |
""" | |
assert self.is_valid(g) and g != self.zero | |
for i in range(1, self.q + 1): | |
if self.mul(g, i) == self.zero: | |
return i | |
pass | |
raise Exception("Invalid order") | |
pass | |
class ElGamal(object): | |
"""ElGamal Encryption | |
pub key encryption as replacing (mulmod, powmod) to (ec.add, ec.mul) | |
- ec: elliptic curve | |
- g: (random) a point on ec | |
""" | |
def __init__(self, ec, g): | |
assert ec.is_valid(g) | |
self.ec = ec | |
self.g = g | |
self.n = ec.order(g) | |
pass | |
def gen(self, priv): | |
"""generate pub key | |
- priv: priv key as (random) int < ec.q | |
- returns: pub key as points on ec | |
""" | |
return self.ec.mul(g, priv) | |
def enc(self, plain, pub, r): | |
"""encrypt | |
- plain: data as a point on ec | |
- pub: pub key as points on ec | |
- r: randam int < ec.q | |
- returns: (cipher1, ciper2) as points on ec | |
""" | |
assert self.ec.is_valid(plain) | |
assert self.ec.is_valid(pub) | |
return (self.ec.mul(g, r), self.ec.add(plain, self.ec.mul(pub, r))) | |
def dec(self, cipher, priv): | |
"""decrypt | |
- chiper: (chiper1, chiper2) as points on ec | |
- priv: private key as int < ec.q | |
- returns: plain as a point on ec | |
""" | |
c1, c2 = cipher | |
assert self.ec.is_valid(c1) and ec.is_valid(c2) | |
return self.ec.add(c2, self.ec.neg(self.ec.mul(c1, priv))) | |
pass | |
class DiffieHellman(object): | |
"""Elliptic Curve Diffie Hellman (Key Agreement) | |
- ec: elliptic curve | |
- g: a point on ec | |
""" | |
def __init__(self, ec, g): | |
self.ec = ec | |
self.g = g | |
self.n = ec.order(g) | |
pass | |
def gen(self, priv): | |
"""generate pub key""" | |
assert 0 < priv and priv < self.n | |
return self.ec.mul(self.g, priv) | |
def secret(self, priv, pub): | |
"""calc shared secret key for the pair | |
- priv: my private key as int | |
- pub: partner pub key as a point on ec | |
- returns: shared secret as a point on ec | |
""" | |
assert self.ec.is_valid(pub) | |
assert self.ec.mul(pub, self.n) == self.ec.zero | |
return self.ec.mul(pub, priv) | |
pass | |
class DSA(object): | |
"""ECDSA | |
- ec: elliptic curve | |
- g: a point on ec | |
""" | |
def __init__(self, ec, g): | |
self.ec = ec | |
self.g = g | |
self.n = ec.order(g) | |
pass | |
def gen(self, priv): | |
"""generate pub key""" | |
assert 0 < priv and priv < self.n | |
return self.ec.mul(self.g, priv) | |
def sign(self, hashval, priv, r): | |
"""generate signature | |
- hashval: hash value of message as int | |
- priv: priv key as int | |
- r: random int | |
- returns: signature as (int, int) | |
""" | |
assert 0 < r and r < self.n | |
m = self.ec.mul(self.g, r) | |
return (m.x, inv(r, self.n) * (hashval + m.x * priv) % self.n) | |
def validate(self, hashval, sig, pub): | |
"""validate signature | |
- hashval: hash value of message as int | |
- sig: signature as (int, int) | |
- pub: pub key as a point on ec | |
""" | |
assert self.ec.is_valid(pub) | |
assert self.ec.mul(pub, self.n) == self.ec.zero | |
w = inv(sig[1], self.n) | |
u1, u2 = hashval * w % self.n, sig[0] * w % self.n | |
p = self.ec.add(self.ec.mul(self.g, u1), self.ec.mul(pub, u2)) | |
return p.x % self.n == sig[0] | |
pass | |
if __name__ == "__main__": | |
# shared elliptic curve system of examples | |
ec = EC(1, 18, 19) | |
g, _ = ec.at(7) | |
assert ec.order(g) <= ec.q | |
# ElGamal enc/dec usage | |
eg = ElGamal(ec, g) | |
# mapping value to ec point | |
# "masking": value k to point ec.mul(g, k) | |
# ("imbedding" on proper n:use a point of x as 0 <= n*v <= x < n*(v+1) < q) | |
mapping = [ec.mul(g, i) for i in range(eg.n)] | |
plain = mapping[7] | |
priv = 5 | |
pub = eg.gen(priv) | |
cipher = eg.enc(plain, pub, 15) | |
decoded = eg.dec(cipher, priv) | |
assert decoded == plain | |
assert cipher != pub | |
# ECDH usage | |
dh = DiffieHellman(ec, g) | |
apriv = 11 | |
apub = dh.gen(apriv) | |
bpriv = 3 | |
bpub = dh.gen(bpriv) | |
cpriv = 7 | |
cpub = dh.gen(cpriv) | |
# same secret on each pair | |
assert dh.secret(apriv, bpub) == dh.secret(bpriv, apub) | |
assert dh.secret(apriv, cpub) == dh.secret(cpriv, apub) | |
assert dh.secret(bpriv, cpub) == dh.secret(cpriv, bpub) | |
# not same secret on other pair | |
assert dh.secret(apriv, cpub) != dh.secret(apriv, bpub) | |
assert dh.secret(bpriv, apub) != dh.secret(bpriv, cpub) | |
assert dh.secret(cpriv, bpub) != dh.secret(cpriv, apub) | |
# ECDSA usage | |
dsa = DSA(ec, g) | |
priv = 11 | |
pub = eg.gen(priv) | |
hashval = 128 | |
r = 7 | |
sig = dsa.sign(hashval, priv, r) | |
assert dsa.validate(hashval, sig, pub) | |
pass |
# Appendix: improved modulo calc | |
def inv(n, q): | |
"""div on PN modulo a/b mod q as a * inv(b, q) mod q | |
>>> assert n * inv(n, q) % q == 1 | |
""" | |
# n*inv % q = 1 => n*inv = q*m + 1 => n*inv + q*-m = 1 | |
# => egcd(n, q) = (inv, -m, 1) => inv = egcd(n, q)[0] (mod q) | |
return egcd(n, q)[0] % q | |
#[ref] naive implementation | |
#for i in range(q): | |
# if (n * i) % q == 1: | |
# return i | |
# pass | |
#assert False, "unreached" | |
#pass | |
def egcd(a, b): | |
"""extended GCD | |
returns: (s, t, gcd) as a*s + b*t == gcd | |
>>> s, t, gcd = egcd(a, b) | |
>>> assert a % gcd == 0 and b % gcd == 0 | |
>>> assert a * s + b * t == gcd | |
""" | |
s0, s1, t0, t1 = 1, 0, 0, 1 | |
while b > 0: | |
q, r = divmod(a, b) | |
a, b = b, r | |
s0, s1, t0, t1 = s1, s0 - q * s1, t1, t0 - q * t1 | |
pass | |
return s0, t0, a | |
def inv2(n, q): | |
"""another PN invmod: from euler totient function | |
- n ** (q - 1) % q = 1 => n ** (q - 2) % q = n ** -1 % q | |
""" | |
assert q > 2 | |
s, p2, p = 1, n, q - 2 | |
while p > 0: | |
if p & 1 == 1: s = s * p2 % q | |
p, p2 = p >> 1, pow(p2, 2, q) | |
pass | |
return s | |
def sqrt(n, q): | |
"""sqrt on PN modulo: returns two numbers or exception if not exist | |
>>> assert (sqrt(n, q)[0] ** 2) % q == n | |
>>> assert (sqrt(n, q)[1] ** 2) % q == n | |
""" | |
assert n < q | |
for i in range(1, q): | |
if pow(i, 2, q) == n: | |
return (i, q - i) | |
pass | |
raise Exception("not found") | |
def sqrt2(n, q): | |
"""sqrtmod for bigint | |
- Algorithm 3.34 of http://www.cacr.math.uwaterloo.ca/hac/about/chap3.pdf | |
""" | |
import random | |
# b: some non-quadratic-residue | |
b = 0 | |
while b == 0 or jacobi(b, q) != -1: | |
b = random.randint(1, q - 1) | |
pass | |
# q = t * 2^s + 1, t is odd | |
t, s = q - 1, 0 | |
while t & 1 == 0: | |
t, s = t >> 1, s + 1 | |
pass | |
assert q == t * pow(2, s) + 1 and t % 2 == 1 | |
ni = inv(n, q) | |
c = pow(b, t, q) | |
r = pow(n, (t + 1) // 2, q) | |
for i in range(1, s): | |
d = pow(pow(r, 2, q) * ni % q, pow(2, s - i - 1, q), q) | |
if d == q - 1: r = r * c % q | |
c = pow(c, 2, q) | |
pass | |
return (r, q - r) | |
def jacobi(a, q): | |
"""jacobi symbol: judge existing sqrtmod (1: exist, -1: not exist) | |
- j(a*b,q) = j(a,q)*j(b,q) | |
- j(a*q+b, q) = j(b, q) | |
- j(a, 1) = 1 | |
- j(0, q) = 0 | |
- j(2, q) = -1 ** (q^2 - 1)/8 | |
- j(p, q) = -1 ^ {(p - 1)/2 * (q - 1)/2} * j(q, p) | |
""" | |
if q == 1: return 1 | |
if a == 0: return 0 | |
if a % 2 == 0: return (-1) ** ((q * q - 1) // 8) * jacobi(a // 2, q) | |
return (-1) ** ((a - 1) // 2 * (q - 1) // 2) * jacobi(q % a, a) | |
def jacobi2(a, q): | |
"""quick jacobi symbol | |
- algorithm 2.149 of http://www.cacr.math.uwaterloo.ca/hac/about/chap2.pdf | |
""" | |
if a == 0: return 0 | |
if a == 1: return 1 | |
a1, e = a, 0 | |
while a1 & 1 == 0: | |
a1, e = a1 >> 1, e + 1 | |
pass | |
m8 = q % 8 | |
s = -1 if m8 == 3 or m8 == 5 else 1 # m8 = 0,2,4,6 and 1,7 | |
if q % 4 == 3 and a1 % 4 == 3: s = -s | |
return s if a1 == 1 else s * jacobi2(q % a1, a1) |
code compiles successfully but not running in CMD containing python 3.5+ version
ecc.py line 40: Assert should be 0 <= a
instead of 0 < a
. For secp256k1
a
is 0.
See: https://perso.univ-rennes1.fr/sylvain.duquesne/master/standards/sec2_final.pdf page 15
Kind regards,
max
already know :
a = 16546484, b = 4548674875, q= 15424654874903,g = (6478678675,5636379357093), n = 546768
---n_a(private_key)= random.randrange(1, n)---
let n_a = n, want to know public key:
solve.py: (failed)
<><><>
ec = EC(16546484,4548674875,15424654874903)
g = Coord(6478678675,5636379357093)
eg = ElGamal(ec, g)
priv = 546768
pub = eg.gen(priv)
<><><>
but reference to: https://asecuritysite.com/encryption/ecdh2
<><><>
def make_keypair():
rewrite-> private_key = curve.n
def scalar_mult(k, point):
delete-> if k % self.curve.n == 0 or point is None:
delete-> return None
<><><>
i can get solve about public key is (13957031351290, 5520194834100), where is the problem?
heyy all i make enkripsi plain text with eliptic curve
https://github.com/BagusMiftahRizqullah/Enkripsi-Eliptic-Curve
I got the following error:
Traceback (most recent call last):
File "ecc.py", line 186, in <module>
apub = ecdh.gen(apriv)
File "ecc.py", line 158, in gen
return self.ec.mul(self.g, priv)
AttributeError: 'ECDH' object has no attribute 'g'
see Elliptic Curve, ElGamal, ECDH, ECDSA.
"The group law" says how to calc "R = add(P, Q)".
The "s" is an angle of the line. the "s" is "dy/dx"(= (a+3x)/2y) when add(P,P).
Example curves of elliptic curve, see: wolfram alpha page
For basic math of modulo, see chapter2&3 of Handbook of Applied Cryptography