References:
https://github.com/tesseract-ocr/tesseract/wiki/Compiling
http://stackoverflow.com/questions/33588262/tesseract-ocr-on-aws-lambda-via-virtualenv
-
Launch an Amazon Linux AMI instance
-
Connect to the instance and generate an AWS Lambda Package
# system libs
sudo yum -y update
sudo yum -y upgrade
sudo yum -y groupinstall "Development Tools"
# tesseract / leptonica / pillow dependencies
sudo yum -y install gcc gcc-c++ make autoconf aclocal automake libtool \
libjpeg-devel libpng-devel libtiff-devel zlib-devel \
libzip-devel freetype-devel lcms2-devel libwebp-devel \
tcl-devel tk-devel
# install leptonica
cd ~
mkdir leptonica
cd leptonica
wget http://www.leptonica.org/source/leptonica-1.74.1.tar.gz
tar -zxvf leptonica-*.tar.gz
cd leptonica-*
./configure
make
sudo make install
# install tesseract
cd ~
git clone --branch 4.00.00alpha https://github.com/tesseract-ocr/tesseract.git
cd tesseract
./autogen.sh
./configure --enable-debug
LDFLAGS="-L/usr/local/lib" CFLAGS="-I/usr/local/include" make
sudo make install
# create a python virtual env
virtualenv ~/tfenv
source ~/tfenv/bin/activate
# Install pillow
pip install pillow
# Install cython
pip install cython
# Install tesserocr
pip install tesserocr
# prepare the zip package
cd ~
mkdir lambda-tesseract
cd lambda-tesseract
cp /usr/local/bin/tesseract .
mkdir lib
cp /usr/local/lib/libtesseract.so.4 lib/
cp /usr/local/lib/liblept.so.5 lib/
cp /lib64/librt.so.1 lib/
cp /lib64/libz.so.1 lib/
cp /usr/lib64/libpng12.so.0 lib/
cp /usr/lib64/libjpeg.so.62 lib/
cp /usr/lib64/libtiff.so.5 lib/
cp /lib64/libpthread.so.0 lib/
cp /usr/lib64/libstdc++.so.6 lib/
cp /lib64/libm.so.6 lib/
cp /lib64/libgcc_s.so.1 lib/
cp /lib64/libc.so.6 lib/
cp /lib64/ld-linux-x86-64.so.2 lib/
cp /usr/lib64/libjbig.so.2.0 lib/
cp -r ~/tesseract/tessdata/ tessdata
cp -r ~/tfenv/lib/python2.7/site-packages/* .
cp -r ~/tfenv/lib64/python2.7/site-packages/* .
mkdir tessdata
wget https://github.com/tesseract-ocr/tessdata/raw/master/eng.traineddata -O tessdata/eng.traineddata
# Create lambda_function.py file (see example below)
# lambda_function.py
import tesserocr
import PIL.Image
import io
from base64 import b64decode
def lambda_handler(event, context):
binary = b64decode(event['image64'])
image = PIL.Image.open(io.BytesIO(binary))
text = tesserocr.image_to_text(image)
return {'text' : text}
# zip the package
cd ~
zip -r lambda-tesseract.zip lambda-tesseract --exclude *.pyc
- You may then copy the zip package to your computer and upload it to S3
scp -i key.pem ec2-user@AWS_EC2_INSTANCE_IP:~/lambda-tesseract.zip .
-
Use the zip url in S3 to configure AWS Lambda.
-
Create an environment variable with key "TESSDATA_PREFIX" and leave the value empty.
-
You can test the function with a test.json file like this:
{
"image64": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUTExMVFhUWGB0XGRYY\nGB4YGRYYGR8dIxgeFxgYHSggGxslIiAZITEhJisrLi4xGB8zODMsNygtLisB\nCgoKBQUFDgUFDisZExkrKysrKysrKysrKysrKysrKysrKysrKysrKysrKysr\nKysrKysrKysrKysrKysrKysrK//AABEIAFMCWAMBIgACEQEDEQH/xAAcAAEA\nAgIDAQAAAAAAAAAAAAAABwgFBgECBAP/xABPEAABAwIEAwUFAwgFBw0BAAAB\nAgMRAAQFEiExBgdBEyJRYXEIFDKBkSNCUhUzVGJykpOhFySisdE1U3Sz0+Hw\nGCVjZXOCg5SywcPS4xb/xAAUAQEAAAAAAAAAAAAAAAAAAAAA/8QAFBEBAAAA\nAAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8AnGlKUClKUClfC8vG2klbi0oS\nN1KISPqdK+rawRI1B2Pj6eVB2pSlApSlApXRbgAJJgDUk6ACtfv+O8NZWW3L\nxlKxEjNMSJG0jag2OlY7CMctrlGe3eQ6kzqkzsYOm41rIA0HNKUoFKV0dcCQ\nVKIAG5JgD1JoO9K1nGePsNtkqLt21KdChCg45PTuIkj5wK8eD80cKuFZU3Ib\nVpo8C1M+BXAJG2/Sg3KlcJM1zQKUpQKUpQKV8rm4Q2hS3FJQhIlSlEJSkDck\nnQAeNYhvjHDlEJTfWhUTASH2ySTsAArUmgzlK4Sqa5oFKV1WuKDtStRRzNwg\nqUn31vuxJIUAZ/CcsK+Vd/6ScJ/Tmfqf8KDa6Vq6OYmFGSL5jQTquNPIHc+Q\n1rp/SThP6cz9T/hQbXSvHhOJs3LSXmFhxtU5VjYwSDHoQR8q9lApSlApSsBx\nNxlZWCQbl4IJnKgAqWqPBKdY8zp50GfpUS4vzzskz2LLzpKCQSA2M/3QZk5T\nqSoT00MmOmCc8Gn7hhgWbiS86hvMXQQkrUEzGXUCaCXaUpQKVpWMc0sMtnVs\nuOr7RtRSsBpZykCd4g+Gk712seaWEuJze9pR0KXEqQoH0I89xIoNzpUfX3OP\nCW1lHauOR95tsqSfQmJr4f024T4v/wAL/fQSRSo7Z5z4SoiXHkzOpaVGn7Mn\nyrceG8cavbdFyzm7NzNlzCD3VFJkdNUmgydKUoFKxHEnEtrYtdrcuBCdgN1r\nPghA1UfTbc6VFmI8/mwVBqyWqFEArdCQU66wEmDtprQTVSoFZ5+OZhmskZZ1\nh0zl6xKYnaPTz0lvhHi62xBrtbdSjBhSVCFIVAMEdd9xI86DP0pSgUpXxvLt\nDSC44pKEJEqWohKUjxJOgFB9qVDfE/PNltSkWbBeIMdqs5Wz5pSO8obfhrCW\nPP18K+2s2lJ0/NrUgjx+LMD6aetBP9K03gnmNZ4iAlBLb0E9iv4iBuW1bLHp\nqI1ArcQaDmlKUClKjnmNzTt7BPZsFD9zI7gMoQNCe0KToY2A+dBI1KrY5zzx\nMkwi2AnQdmowPCc+tbnwBzmTcOBm+ShpSiAh1OjZMbOZichJ2MxrBiNQmCld\nUKBEjau1ApSlApSlBFvG3OFuxuXbZNst1bUAqKwhMqAOkAkiDv49OtR1inOj\nFHSS2pthPQIbCiJGgKnM0nroBUs4xypsbq9cu3y6vtCCpvPlRISEj4QF9PxC\ns/gnBeH2sdhaMoVEZsudcftrlX8/DwoKmYpidxcr7R95x1XRTi1Kj0mYE9Bp\nVteBFTh1mcoT/V2u6JAHcToJ1qDfaH/ymj/RUf6xyp14JtS1h9o2dSlhsEyT\nJyiYmgzVKUoFa/xpxYxh1uX3pOuVCB8Ti40A8PM9K2CoP9pRlZFkoIVkSXgV\nxKQpXZwD4GEk+cHwNBofGnHV5iy0tkZWysdnbo1lRgCTErUTt57CsjgfJnFH\ntXA0wJiHFyrbcJbnrpqQa37kDwwlFsq7dYKXlLUltapB7GEQUpOglQX3okx4\nVLgSPCgqnxNy8xLDVh4oKkNkLD7JKggpMgnTMgiAZIjzrb+XfNu594QxfOdq\n24oIS4QlKm1E6E5QMySSkGdRU9uIBBBAMiIPUeB8qrRzm4MZw+4aUwCll9Kj\nlJkJcSrvBJjRMKRA1jWgsyDXNalyqxY3OF2zijKwjs1EnMZaJRJPiQkK1/FW\n20GN4jxFVvbPPpbLhabUsIBgqygmJ/49DVb+IONsUxgptkoMHXsWEqGbYSvv\nEkDzgCfSrPvNhQKSAQdCCJBB3BB3FYnhvhe0sUqTaspbCzmVBKiT5lRJjwGw\n1oK/YPyYxRxaA6lDCD8SlLSspHXuIMk76aDTenFnKC+s2S8lSLhKZzBuQpCY\n+LKdx0IEnUb1ZmKGgrhyr5lvWrzdtcuKct3FpTmWpRLEgJTlKjo3tKdgASI1\nmx6TVX+d2BsWuJZWEBtDjSXSkfDnUpQUR4DQGPOrA8AXrj2HWjrhlamUFRiJ\nMbx57+HXSg2ClKUCuCa5rTuaHGH5OsytBSX1nI0lXj95UDcJGvhMDrQaFz+4\ntVphrUQpKVvEg/iSWgkztoSdD0qGrBlSLlpKwQoOIkHQ6kEaHyqR+U3CS8Su\nVXt4S402vv8AaDP7w4Qe6So/CnukyDuBWsY2rtsdWMpGa+yQnvHR3L3ZgTpo\nNulBbOKV1Qa7UCvLijHaNOI/GhSfGMwI2677V6q8WNOZbd5UTlbWcp2MJOho\nKicH8POX90i2bUlKlBRzK+FISCST/d863t7kViOmVy1MiT31iD4fmzp5+dYH\nks4oYxbQYB7QK8x2a9PPWPpVqxQVwa5F4nIBdtgJ1PaLMDxjs9fSvtdciMQE\nZH7ZfjJWmP7Bn/dViaUGtcucCdscPZtXiguN55KCSnvuLUIJAOyh0rZaUoFc\nE1zUS8/eKHLe3btWyAbnOHNJPZpyiBrpJO8dDQYLmxzRuE3CrSxcLaWiQ48k\npJWqNUoOuUJ1BO8jpGul8JctsQxAhxKezZWCrtnSQFeYHxKk9YjzrcORnAiH\nx7/coCkpVDCFDulSfiWR1AOgB6gnpU8oQAAAIjYeHpQQ5g/IRgJ/rVy4tcjR\noBCPMHMFE+oy1mLDkpYNPofQ9cgtuJcQnMiAUkKAJyZiJG8gx9ak2lBwBXNK\nUFTeYrZXjN0gGM1xl9Jgf8elSDccgl65L4EaQFsnymSF+saV7OIOUFzcYg7d\ni4ZSlbwcAIUVASPKJ0qZBQQpY8gU5Ptr05j0bbGUbdVGT6wPSvo7yBZ0y3rm\n+stpMiDtroZj5TU0V5cVvEssuurMJbQpZMgaJBO506UFSeNcATYXSrVL4eKE\npKlBOQJUROUiTqBBn9boRVk+VGGuW+E2rTohYSpRHh2i1LAPgQFCR0M1XDhb\nC1X+JtNwtxLr2dwq1UW82ZZWR1ImT4mrctpgRAHkKDvXixjEm7Zlb7pyttpK\n1HfQeXU9APE17a1bmeB+SryQCOxVuY16GfEGCB1260Fb7t65xfEVFOda33IS\nDJDTalQkEDZCAdfTzqY8I5F2CEDt3HnlwJIUG0g9coSJj1JrRfZ4cP5SdSIh\nVusnQdFojXeNasenYUEXYryQw9TSgwXWnI7qyvOmemZJHw+Ma1CuEXr2FYkl\nxaDnYcIWjVOZOoVG0gjUE6HQ1bs1X/2jGmk3dspKYcU0orVA7wCoR6kd/fyo\nJ8tXwtCVp1SoAg+IIkfyr61qXKjN+SbPMtSj2WhMaCTlSIGwEAeQrbaBVdOe\n3F5ubgWTRUG7ZR7SdAt308EiQD5nyqxDjgSCSYAEn0G9VS4PKbzGmVOiQ7dF\nxQ6HvFYGvSQBB6UEh8A8mG1sh7EQvMoApYSrLkHTtCNcx10B0B8dtqv+TOEr\nQUoZW0rotDq1EfJxSkn6VIQrmgqZxvwHdYa6e0BWxplfSkhBnYH8KpB0nzFT\nnyi44GIW/ZuSLhgJSsk/nAZAWIAAkgyOn0raeLMGRd2b9uoA9oggT0Xug/JQ\nSflVbuUV+7b4swhMAuKLLiT+FWqhp1BSk+ooLUUpSg0fnDxD7nhzmUqDr32L\nZSNirVRJOwyhVQjyp4G/Kb6g4oi3ZAUvLupSicqASIE6knXQecjOe0Ti613r\nVtshlrOB4rcJkn5BIHz8alXlDw+mzw1kCCp9IuFqGklxIKQPJKco9QT1oMl/\n/C4Zlye4WsRH5lGb9+M0+c1CPNDleqwCrm3VmtJAIUe+1mMAE/eRMAHfUTO9\nWRrG8R4ULq1ft1bOtqRPgVDQ6g7GD8qCO+RvGouGRYuk9swjuaGFMJyga7Zk\nyBHgRHlK1VT5ZYkbLF2A4Snvm3cA1+KUwY0Iz5T8pq1SDpQdqUpQKUpQKUpQ\nVw9oj/KaP9FR/rHKsBw+f6rb/wDYt/8ApFQp7SVqlL9o6IzLbcQdNw2pJTJ6\n/GalHle2pOE2QUZPYpO891Wqf7JA8tqDaaUpQK4iuaUHEVzSlANQP7SGIJLt\noyFAlCVuEfeGcpCZ9cp+lStxrxYzh9up50gq1Dbcwp1X4U7/ADMafSa/cNYS\n9juKqceScpUHHyJAQ0CAlCSB8UQgdSEz0JoJn5H2iW8HtyE5VOFxaz1Ue0UE\nqP8A3EoE+AFb5XxtLZDaEttpCUJASlKRASkbAAbAV9qBSlKDia+N7dttNrcc\nWEIQkqUomAkDck1FvPLjC9sFWotHg32gcK+4hc5ckfnEmNzt41CfEHF9/fQL\nm4W6AZCICUTtORACZ84mgy3MjHVYjia1tQpGYMMxstKSQkgkD4iSdds0dKsx\nwjh6reytmF/G0y2hWs95KQFa+tQLyPfw1t9S7xaUPpILBdMNjfMUkmO02ifl\nrNWPRHSg7UpXBNB8MQu0MtrdcUEobSVqUdglIkn6VWbHb57HsWSlrMELORoK\nkhttO61JExOqj5wJrceePHx72HW6o/SFDwI/NajzBJHkPGti5NcAKsWzc3AI\nuHkZcsn7JskHKRMFSoSTO2UAdZDfMCwlu0t2mGkgJbSEiBEkbk+ZMk+pqq/E\nDQRjLqUBaQm8MZiSr85vJ1M7gnWCKtyaqNiCe0xpY1VnviBESQXiBE6ek6UF\nuQK5rgGuaBXyuUJKFBQBSQQQdiCNZ8q+teTFlqDDpQJUG1lIiZUEmBHX0oKp\ncrGyrFrMJmQ6FaGNEglX8gdOu1WKxXmRhdsoocu2ypJylKJcKTrIPZgxER5V\nWbhvhW8vXMlvbrX4mMqE/tLVoP7/AFqUML5CLISbm7CTrKGkZo00hxRE/u0G\n3v8AOvCUmAt1Q/Elox/ag/yrb+HuKLO9TmtrhtzrlBhY/aQYUPpURX/IBWvY\n3o6aONEdNe8lRnXyqN8Vwu9wm8CVZmnWzmbdTspIPxIPVJ6g+JBFBb6lapy4\n4wRiVoHdA8iEPIGwXG6RJ7itx8x0ra6Dgmqt8ycS/KGMrQFdwOJtmzGgCVZV\nGBqe+VHzqz167kQpcTlSVR6Amqm8u7xhGIJurtwZWQu4ObvKdcQCUJTm0LhV\nBEkajeYoLPcL4UixtGrfOCllEFZASCd1KPQak9frXgHMbCc2X35mZjcx+9ER\n57VA2PYliONXa1MtPKaUrs0NJns0pTKkhxU5M0d4kn00ArIK5H4pGabaYnL2\nipmNtURPzjzoLFWGIMvoDjLqHEHZSFBST80mK9NVCxPDMRwp4JWHrZaphbay\nkLSN8q2zBGvj97UCp65R8di/t+ycM3LISFkkS6CSAtIGvhm03I8aCQ6UpQKU\npQKjbnvjqrfDi02sBdwsNkdS3BLkeEwBP6xqSFGqs818fVfYo6EAlLR92bSB\nJVkJzRB7xUsqiNxloNy9nDCjmurpSdgllCuhJlTgHpDf1qdawHAmC+52Fvbk\nALQjvwSQXFSpZk6/ETWfoFebELVLra21CUrSpJ66KEHQ16a6rVFBVLA7+4wL\nE1ZwkqaJadTEhbaoJyEwQSAlQOnSdJqx2Cca4fcpBZumiYBKVKCVpkD4kqgj\ncD1qAubvGLGIPBNu0gobIAuMpDq95GuvZaiARMjSBWJseW+LPNpcRZuFChmS\nSpCZB65VqBE6dKCwvFvMSwsUAuOhxZ1S21C1kTqd8oG+pI2quuI3dzi+IjVS\n1POBKUgFQZbJ0CU9EoGp22JO816neV2MJSSbJcAToptR+QC5J8hWb5V8wkYa\nfd7hlIaUs53QmHkE6HON1pEARuI67UFhcBwxu2t27doHI0kITJkwOpPid/nX\nvr42j6VoStBlKgFJI2KSJBHqK+1BwRVSb95eGYs4toZV29wvKCSQUEmEkq1I\nUhUE+B+dW3qKecHLp2/U0/aISXhKHAVBGZESgydyDI9FDwoJHwXFmbllt9lY\nW2tOYEfzB8CDII6EV7pqpWC8TYlhLy2kKU0Qr7RlxIUgqTpqk9YAGZJBIA1i\ntjxDnfii0kITbtSIlLZUQfEdopQ+oigmDmXxu3htsSFf1hxKgyiCRIgFStNE\npkHXfb0r7y0cKsYtFEyS9JPiTJNZTgvha8xl4uvuLLCVS684TqJlSGp0Cjrt\non6CsbwYlKMbYFt9o2LvK2SfibzEAk6a5NfOgtnSuEmuaCpvMFarvGblKNVL\nuOwSDCe8jK2PlIAmrUYZZpZZaaSIS22lsCSYCAABJ1O25qq3Gea2xm4W33lN\n3ZeTI0KirOAQNwCY+VWutXCpKVKSUkgEpO6SRqPlQfWuq9q7V1XtQVHDQTje\nUAgJv4AO4Ae2PnVuRVS+ZTCWMXuU26SjK6FJAJJCyEqJT1HeJIHSQOlW0FBz\nSlKBSlKBSlKCu/tE3KziDLZJKE26VJT0ClrWFEeZCU/u1MXLNKxhVlnMnsEE\nfskdz+zlqHfaHZjEGlZYzsAFX4oUrcdI018/Kpl5dXaXcMtFoKI7FAIR8KVJ\nSAU7nUEQR4ig2OlKUClKUCtI5kcwWcNbKdF3Kky215HZS42RofMxHnXk5o8x\n28PR2LWRy6XsiZDQ/E4Bv5J0n03hThLhq5xm8UVuEyQt95WpSDP9oxCRsI6A\nCg7YVhOI47dlZKlSe+6qeyZBkhIHTyQPn1NWU4Y4fZsrdDDKYCQAVdVqAEqU\nepJk/M124d4ft7JlLNu2EIG/4ln8S1feV5n5QNK64/xJa2eU3L6GgucuYmVE\nbwACYGk+ooMvSsfgmMsXbfa27qHW5jMgzBG4I3SdRofEVkKBSlKDw4lg1tcQ\nH2GngDIDqEuAE7kBYMH/AArzN8L2KUKQm0t0oXopKWUJCh+sAnWsvSgrlzl5\ndt2Kk3VqlQt1HKpEyGV/dykmcqtd9iInvADe+QfESrixWwtSSq2WEpEQQ0oS\nifGDnE+QrYebmT8k3naRHZiJE9/Mns9uubL84qH/AGeE/wDOLhlWjCtAND3k\nRmPTy86CyNYPjTHhY2bt1kz9llhMxJWpKEyY0EqE+U1nKxvEWEIu7Z22WSlL\nqCgkAEidiJBEigqdgWPhq/TevtB+HVOqQTAWpU6zESFHMNPu1LA9oBv9AX/G\nH+zrLo5E4flAU/dkjchTYn5FowP8dzS65FYerLkeuURAV3kKzRudUaKOm2gj\nagw7nP8ATBiwVPSXhE+f2dRI3jsYgL5Tcn3g3HZ5oGbOVhOaJgGOnSpvPIew\nlJFzdR94S3r+yez7o9QahP8AIyDinuQUrJ737vm0Ksva5J2jNGu0UEmp5+u/\noCNf+mP/ANKmXhzGEXds1ct/C6gKAmcp+8knxSoFJ9K0C75G4av4HLluI0C0\nqEaT8SCddeu5+Vb/AMOYI1ZW7ds1mKGxAKjKjJJJJAAkkk6ADXQCgyVcEVzS\ng4SmK5pSgVpfNjhn36wcSmA419s2T1KAZTJ2zAkesVula/x7iYt8Pu3ZAIZW\nEk/jUkhAjrKiKCE/Z3uVDEHWkqIQtgqUPxKQpOU/LMr61Yyq3+zw2TiTigNE\n26wfKVNx9dashQfC8bzoUiYzJKZ8JEVTrA8BdfvEWYAS6tzszMQggnMT4hIB\nOm8VcsiqtcYtqwzHFuIA+zfTcISklIKVELyabCCUn1NBY3hfhu3sWEsW6SEC\nSZMlSjupR6nb6VmAK+GH3SXWm3U/CtCVjWdFAEajevRQYLjHhhnELZdu7pIl\nKwAVNrGykz8wY3BI61Wvgp52yxlhpChmTdC2WqNFJU4EL0PQiSOo0q17iwkE\nnYCT6CqnYG4H8cZdbBIcv0upEa5C8FSR5J1PhB8KC2dKUoFKUoMZxJi6bS1e\nuVCQ0gryzGYjZM+JMD51WHgTB/fsWaSrMEqdLy8p1SEysgHfcZZ31qWfaC4h\n7GzTap+O5V3vJpsgn5lWUegVXj9nzhpKWVX64K3CptvrkQkws7aKUfPYUExI\nrtSlArQ+dGOuWmGqU0vI44tLSVA5VAGSooI1BgHUbTW+VFvtDMFWHNKCSQh9\nJJBEJBStMmR1JA6akUGiciuDk3Nwq7dBLduoZExKVuwTqf1O6qB1KddKsYna\noj9nC5R7nctT30v5ynqErQgJPzKVfSpdoOCKgj2gOFENKRiDSSFOLCHojLmj\nuK01BMEE9dOu88VD3tF4okWrNsFDMt3OpIUM2RCVRmTvGYgz+r9AynIPGHHs\nN7NQ0t3C2lZM5ge8BqZGUKA8IjwqTaiz2erNSMNWo7OXClJ9AEJ+eoO1SnQK\nUpQYzGOH7W6CRcsNuhJkZ0hUT4E6isJh/LLCGVZkWTZJ6OFTo+SXVKA+lbdX\nnxC9bZbU66tKEJ1UpaglKR5k0Gnc2MdFhhjvZgJU5DDYA0SXAZ0G0ICyPMCo\no9n3CQ7iCnlJBTbtkgmdFr7qCBsdO039a8nNjjEYndttW4UppolDZEntlry9\n4IyzOmUDUmPOKmvlZwz7jYNtrbCH1St3YkqJOUKUN4TAiTGupoNwpSlBVbnR\narbxa4Kk5Q5kcTEwpJQkFQnxUFA+YNWV4YvC9aWzpyy4w2s5dpUkExqdJqHv\naOwpRVa3QR3cqmVr8DOZsHy1XHzrauQ2O9vh/YKUCu1UW95JbV3myfAfEj/w\nxQSXXVe1dq0vm5jy7TDHnGyA4spaSSJ+MwrTb4c0E9aCBMAR+U8bbLvfS/cF\nas+mZtMqynLt3UxpVrUVXX2ebILxBx0x9kwco81qCZBnoMw+dWMoFKUoFKUo\nPNc37Tcdo4hE7ZlhM+kmvgcdtf0lj+Kj/GoI5l8EYre4ncOt2qlo7oQoLQEl\nAAAgqKddCSNwSdxBOFRyZxcpCi02Jjul1MifGNNPWgzvtDYghy5tQhaVBLKj\nCSDGdWhkeIH8qk/ltiNs1hdmhVwyCGUkguJBBV3iCJ3Ex8qhf+hXF/wM/wAU\nV2VyUxWAQGCTuA7qn1JSAfkTQWL/AC7a/pLH8VH+Neq1ukODMhSVJ/EkhQPj\nqKrR/Qpi/wCBn+KKmzlRgLtlh6GHkhLoWtSgCFAyo5TI/Vy0G41F/N7mUbAe\n7W4/rKkhXaaFLKTMGCCFLMHQ6Aa1KFQpzX5b39/fm4tw2Wy2lOq8pBTMyCPO\ngjrhLDkYjeLfv7xtluQt5x1SUlxSj8Ce8nVQSvvD4QPMTP2BY7gto0lm3vLN\nDaegeRJPUqOaVKPiahBHJvFy5kLTaRE9oXU5PTSVT8q9p5GYn0ctTp0cX9NW\n/wDdQT1bcXYe4YbvLZZGpCXkGB+9UW+0Didq8wwlu5Qt5twns0FK5QpOqlKG\nqQIGkwZ1BgRrR5FYn/nbT99z/ZV8LPkliiwSTbohRELcPeAiFAoSrQ67wdNq\nCRPZz/yc/wD6Wv8A1bNSpWm8q+FHcNs1MvKQpxbqnTkJKRISkAFQBOiQdutb\nlQYPjXiAWFm7dFBX2cQkECVKISmSdhJEnwnetT4a5yYe+lIfUbd3KMwWCW83\nglYH94H8q3rGcKZumVMPoDja/iSSQD4aggggwQRqCKh/inkVOZdlcR1DT2vy\nS4kaddx4SdzQTLb37SxKHELExKVBQ+oNYrG+MbC0JFxctIUBOTNmcg7Q2mVa\n+lQAOSuLfgZ/iivpb8k8VKgFBlIO6i5IHySCaDnmrzLViCgxb50Wo3CtC8ZB\nBUOgBAgT5nwEockOGPdbHtiTnuiHCCnKUpTIQnXWdyfXymvhwdyatLVQduF+\n9OJIKQU5G0kfqSc5/a08qk4Cg5pSlArz4hetstqdcUEoQCpSjskDcmvRWG4w\nwT32yftc+QuogK10UCCmY3EgSOokUGCc5q4Rkze9p2nKErzekZfi8qr69irB\nxkXSCQx74l6SDOTtApRgknxMVIFtyCezjtL1vJ1ytkmPIEgT6/z2r3XfIFBV\n9nfKSn9dkLM6zqlxIjbpQbb/AEvYOFZTcneJ7JyPCZy7edbrh96h5tLragpt\naQpKhspJEgioWPs/q6YgPnbkf/N/xFTDw/hYtbZm3CswabS3miJygCYkxO/z\noMhUa84eNbnDBaqtw2e1U5nC0kyEZIAggj4j/KpKrCcScKWl8gIumQ4EzlMl\nKkFUTlUkgjZPrFBHWD8+bZUC4tnWtu8hQcTtqSDlUBPhNbza8wcLcSFC+twD\n+NwII9Urg1p+L8i7Jclh51nSADDiZHXWFeomteueQD0wi+bI/WaKDPoFq/vo\nJIxrmbhdu2Vm6bdOwQyoOqUYmISdB0kwKgjjfje6xZ9LaULS1mCWrdBkqUTu\nsAd9ZPyHTqTtbXIC4kTetATqQ2omPISJ+oqTuDOXtnhyUltAceG77gBX55Oi\nE+Q6bk70GP5S8D/k63Up2DcuwXI1CAPhQD1gySRoT5AVv1KUCoq55cELu2UX\nNugrfa0UlI7y2jrp4lJkgeClVKtcKFBWnlhzRVhw93eQp22kkFJ77U75QdFJ\nJ1y6RJM9DMqeaOEZZ98RtMQufSMu9fDiflZh14CezDDsz2jICSZ3zJjKqfSf\nA7zpH/J9/wCsB/5b/wDagxnM3m6m7ZNrZJWhtwQ6tYyrUPwJAJhJ6nczGms7\nDyK4JWwFX1wkpW4nKygiClswVLI3BVsNoE/ir1cN8jrVhxK7l43ISZDeTs2z\ntGcBSiqNdJg6SImZWQmBQdqUpQKUrq4mRG1BWPnhivvGKrQlJHYISx4lSgVK\nkAea4HpViuFsP93s7dnKEltpCSBtmCRm/nJnzrVMK5S2DT3vDinrh3tO1CnV\nzrMjMEgZtdZPhW/AUHNKUoFYziPBW7y2ctnfgcTBI3Sd0qTP3kmCPSsnSgqr\ncMX2AX6VGdDKSCQ2+jYyOu57p1SqD4TJ+G8+LJSR21u+2cuuXKtObwBkEjzI\nFSbjOEMXTSmX20uNqEFJ/wDYjVJ21BB0qP7rkbhilZkrum9B3UOJI0699tRn\n50GK4i57sJbIs7dxbhGingEoSfNKVFSvTTfeonssPxDGbtbiQp55ZzLWYCED\nQCSdEpGgCRrA0Bqb7HkhhaB3zcO7fG4ABHgG0p385rfcIwhi2bDVu0hpsfdQ\nIE+J6k+Zk0HHD+HJtrdphAAS2gJESRoNYnXUyfnWQpSg+F9dBptbivhQlSz6\nJEmone5+Wkdy0uFHTRRQkROuoJ6T0+m9S2+0FApOxBH1qLv6BcN/z95++1/s\naDDv+0AiSBYKIkxL4E+EgNmPST86j3iTjDEMXWGlSUlct27Q7oJgCQO8s+aj\nAkxE1NFjyVwpEZ0POwI+0dIB13PZBGvTTTStxwLhy1swRbMNtTAJQIKo2zHc\n/M9aCLuVHKp22fTdXwSFIEtNBQVCiFZi5pEpEQATrr0FTOKUoFKUoMZxHhDd\n3buW7k5HElJgwR1BBIOoIB2O2x2qsWNYNiGB3IUlakKP5t5HwLHXeQfNCh1G\nmoq2FeLFMLZuEhDzTbiQoKCVpChmGxhQImggy35+3ASkLs2ioDvFK1JBPkkg\nx9TWoY3jt/jl0huCok/ZMI+BsGJJ+WpWo/QaVPdzyswhasyrJAMAd1biE6fq\noWEn6VnsH4btLUk29uy0TuUICVEeGYCY0GlBgeV/BAwy2KVKSt5w5nVpGkjQ\nISTqUJ1ieqlHSYrdKUoFKUoFKUoOMormlKBSlKBSKUoFKUoOIpFKUCKRSlBz\nSlKBSlKBFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUo\nFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUoFKUo\nFKUoP//Z\n"
}
It should print 1234567890.
Hi @Gautami007, to me this sounds like a general AWS Lambda issue, nothing related to tesseract. Please make sure that you haven't changed the name of the primary function you intend Lambda to call. If it's no longer called
lambda_function
, either change the function name or tell Lambda which function you want it to call using the Handler field, as seen here. Documentation here.