-
-
Save banksean/304522 to your computer and use it in GitHub Desktop.
// Ported from Stefan Gustavson's java implementation | |
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf | |
// Read Stefan's excellent paper for details on how this code works. | |
// | |
// Sean McCullough [email protected] | |
/** | |
* You can pass in a random number generator object if you like. | |
* It is assumed to have a random() method. | |
*/ | |
var ClassicalNoise = function(r) { // Classic Perlin noise in 3D, for comparison | |
if (r == undefined) r = Math; | |
this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0], | |
[1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1], | |
[0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]]; | |
this.p = []; | |
for (var i=0; i<256; i++) { | |
this.p[i] = Math.floor(r.random()*256); | |
} | |
// To remove the need for index wrapping, double the permutation table length | |
this.perm = []; | |
for(var i=0; i<512; i++) { | |
this.perm[i]=this.p[i & 255]; | |
} | |
}; | |
ClassicalNoise.prototype.dot = function(g, x, y, z) { | |
return g[0]*x + g[1]*y + g[2]*z; | |
}; | |
ClassicalNoise.prototype.mix = function(a, b, t) { | |
return (1.0-t)*a + t*b; | |
}; | |
ClassicalNoise.prototype.fade = function(t) { | |
return t*t*t*(t*(t*6.0-15.0)+10.0); | |
}; | |
// Classic Perlin noise, 3D version | |
ClassicalNoise.prototype.noise = function(x, y, z) { | |
// Find unit grid cell containing point | |
var X = Math.floor(x); | |
var Y = Math.floor(y); | |
var Z = Math.floor(z); | |
// Get relative xyz coordinates of point within that cell | |
x = x - X; | |
y = y - Y; | |
z = z - Z; | |
// Wrap the integer cells at 255 (smaller integer period can be introduced here) | |
X = X & 255; | |
Y = Y & 255; | |
Z = Z & 255; | |
// Calculate a set of eight hashed gradient indices | |
var gi000 = this.perm[X+this.perm[Y+this.perm[Z]]] % 12; | |
var gi001 = this.perm[X+this.perm[Y+this.perm[Z+1]]] % 12; | |
var gi010 = this.perm[X+this.perm[Y+1+this.perm[Z]]] % 12; | |
var gi011 = this.perm[X+this.perm[Y+1+this.perm[Z+1]]] % 12; | |
var gi100 = this.perm[X+1+this.perm[Y+this.perm[Z]]] % 12; | |
var gi101 = this.perm[X+1+this.perm[Y+this.perm[Z+1]]] % 12; | |
var gi110 = this.perm[X+1+this.perm[Y+1+this.perm[Z]]] % 12; | |
var gi111 = this.perm[X+1+this.perm[Y+1+this.perm[Z+1]]] % 12; | |
// The gradients of each corner are now: | |
// g000 = grad3[gi000]; | |
// g001 = grad3[gi001]; | |
// g010 = grad3[gi010]; | |
// g011 = grad3[gi011]; | |
// g100 = grad3[gi100]; | |
// g101 = grad3[gi101]; | |
// g110 = grad3[gi110]; | |
// g111 = grad3[gi111]; | |
// Calculate noise contributions from each of the eight corners | |
var n000= this.dot(this.grad3[gi000], x, y, z); | |
var n100= this.dot(this.grad3[gi100], x-1, y, z); | |
var n010= this.dot(this.grad3[gi010], x, y-1, z); | |
var n110= this.dot(this.grad3[gi110], x-1, y-1, z); | |
var n001= this.dot(this.grad3[gi001], x, y, z-1); | |
var n101= this.dot(this.grad3[gi101], x-1, y, z-1); | |
var n011= this.dot(this.grad3[gi011], x, y-1, z-1); | |
var n111= this.dot(this.grad3[gi111], x-1, y-1, z-1); | |
// Compute the fade curve value for each of x, y, z | |
var u = this.fade(x); | |
var v = this.fade(y); | |
var w = this.fade(z); | |
// Interpolate along x the contributions from each of the corners | |
var nx00 = this.mix(n000, n100, u); | |
var nx01 = this.mix(n001, n101, u); | |
var nx10 = this.mix(n010, n110, u); | |
var nx11 = this.mix(n011, n111, u); | |
// Interpolate the four results along y | |
var nxy0 = this.mix(nx00, nx10, v); | |
var nxy1 = this.mix(nx01, nx11, v); | |
// Interpolate the two last results along z | |
var nxyz = this.mix(nxy0, nxy1, w); | |
return nxyz; | |
}; |
// Ported from Stefan Gustavson's java implementation | |
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf | |
// Read Stefan's excellent paper for details on how this code works. | |
// | |
// Sean McCullough [email protected] | |
/** | |
* You can pass in a random number generator object if you like. | |
* It is assumed to have a random() method. | |
*/ | |
var SimplexNoise = function(r) { | |
if (r == undefined) r = Math; | |
this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0], | |
[1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1], | |
[0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]]; | |
this.p = []; | |
for (var i=0; i<256; i++) { | |
this.p[i] = Math.floor(r.random()*256); | |
} | |
// To remove the need for index wrapping, double the permutation table length | |
this.perm = []; | |
for(var i=0; i<512; i++) { | |
this.perm[i]=this.p[i & 255]; | |
} | |
// A lookup table to traverse the simplex around a given point in 4D. | |
// Details can be found where this table is used, in the 4D noise method. | |
this.simplex = [ | |
[0,1,2,3],[0,1,3,2],[0,0,0,0],[0,2,3,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,2,3,0], | |
[0,2,1,3],[0,0,0,0],[0,3,1,2],[0,3,2,1],[0,0,0,0],[0,0,0,0],[0,0,0,0],[1,3,2,0], | |
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0], | |
[1,2,0,3],[0,0,0,0],[1,3,0,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,3,0,1],[2,3,1,0], | |
[1,0,2,3],[1,0,3,2],[0,0,0,0],[0,0,0,0],[0,0,0,0],[2,0,3,1],[0,0,0,0],[2,1,3,0], | |
[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0], | |
[2,0,1,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,0,1,2],[3,0,2,1],[0,0,0,0],[3,1,2,0], | |
[2,1,0,3],[0,0,0,0],[0,0,0,0],[0,0,0,0],[3,1,0,2],[0,0,0,0],[3,2,0,1],[3,2,1,0]]; | |
}; | |
SimplexNoise.prototype.dot = function(g, x, y) { | |
return g[0]*x + g[1]*y; | |
}; | |
SimplexNoise.prototype.noise = function(xin, yin) { | |
var n0, n1, n2; // Noise contributions from the three corners | |
// Skew the input space to determine which simplex cell we're in | |
var F2 = 0.5*(Math.sqrt(3.0)-1.0); | |
var s = (xin+yin)*F2; // Hairy factor for 2D | |
var i = Math.floor(xin+s); | |
var j = Math.floor(yin+s); | |
var G2 = (3.0-Math.sqrt(3.0))/6.0; | |
var t = (i+j)*G2; | |
var X0 = i-t; // Unskew the cell origin back to (x,y) space | |
var Y0 = j-t; | |
var x0 = xin-X0; // The x,y distances from the cell origin | |
var y0 = yin-Y0; | |
// For the 2D case, the simplex shape is an equilateral triangle. | |
// Determine which simplex we are in. | |
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords | |
if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) | |
else {i1=0; j1=1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) | |
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and | |
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where | |
// c = (3-sqrt(3))/6 | |
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords | |
var y1 = y0 - j1 + G2; | |
var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords | |
var y2 = y0 - 1.0 + 2.0 * G2; | |
// Work out the hashed gradient indices of the three simplex corners | |
var ii = i & 255; | |
var jj = j & 255; | |
var gi0 = this.perm[ii+this.perm[jj]] % 12; | |
var gi1 = this.perm[ii+i1+this.perm[jj+j1]] % 12; | |
var gi2 = this.perm[ii+1+this.perm[jj+1]] % 12; | |
// Calculate the contribution from the three corners | |
var t0 = 0.5 - x0*x0-y0*y0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient | |
} | |
var t1 = 0.5 - x1*x1-y1*y1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1); | |
} | |
var t2 = 0.5 - x2*x2-y2*y2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to return values in the interval [-1,1]. | |
return 70.0 * (n0 + n1 + n2); | |
}; | |
// 3D simplex noise | |
SimplexNoise.prototype.noise3d = function(xin, yin, zin) { | |
var n0, n1, n2, n3; // Noise contributions from the four corners | |
// Skew the input space to determine which simplex cell we're in | |
var F3 = 1.0/3.0; | |
var s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D | |
var i = Math.floor(xin+s); | |
var j = Math.floor(yin+s); | |
var k = Math.floor(zin+s); | |
var G3 = 1.0/6.0; // Very nice and simple unskew factor, too | |
var t = (i+j+k)*G3; | |
var X0 = i-t; // Unskew the cell origin back to (x,y,z) space | |
var Y0 = j-t; | |
var Z0 = k-t; | |
var x0 = xin-X0; // The x,y,z distances from the cell origin | |
var y0 = yin-Y0; | |
var z0 = zin-Z0; | |
// For the 3D case, the simplex shape is a slightly irregular tetrahedron. | |
// Determine which simplex we are in. | |
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords | |
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords | |
if(x0>=y0) { | |
if(y0>=z0) | |
{ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order | |
else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order | |
else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order | |
} | |
else { // x0<y0 | |
if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order | |
else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order | |
else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order | |
} | |
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), | |
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and | |
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where | |
// c = 1/6. | |
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords | |
var y1 = y0 - j1 + G3; | |
var z1 = z0 - k1 + G3; | |
var x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords | |
var y2 = y0 - j2 + 2.0*G3; | |
var z2 = z0 - k2 + 2.0*G3; | |
var x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords | |
var y3 = y0 - 1.0 + 3.0*G3; | |
var z3 = z0 - 1.0 + 3.0*G3; | |
// Work out the hashed gradient indices of the four simplex corners | |
var ii = i & 255; | |
var jj = j & 255; | |
var kk = k & 255; | |
var gi0 = this.perm[ii+this.perm[jj+this.perm[kk]]] % 12; | |
var gi1 = this.perm[ii+i1+this.perm[jj+j1+this.perm[kk+k1]]] % 12; | |
var gi2 = this.perm[ii+i2+this.perm[jj+j2+this.perm[kk+k2]]] % 12; | |
var gi3 = this.perm[ii+1+this.perm[jj+1+this.perm[kk+1]]] % 12; | |
// Calculate the contribution from the four corners | |
var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0; | |
if(t0<0) n0 = 0.0; | |
else { | |
t0 *= t0; | |
n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0, z0); | |
} | |
var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1; | |
if(t1<0) n1 = 0.0; | |
else { | |
t1 *= t1; | |
n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1, z1); | |
} | |
var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2; | |
if(t2<0) n2 = 0.0; | |
else { | |
t2 *= t2; | |
n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2, z2); | |
} | |
var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3; | |
if(t3<0) n3 = 0.0; | |
else { | |
t3 *= t3; | |
n3 = t3 * t3 * this.dot(this.grad3[gi3], x3, y3, z3); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to stay just inside [-1,1] | |
return 32.0*(n0 + n1 + n2 + n3); | |
}; |
yes, thanks for this. I'm using it to generate random numbers to drive a drunk walk function I wrote in javascript for max for live (max/msp in ableton live): https://github.com/blakelymcconnell/m4l_js2liveAPI
Does this have any sort of license? If so, what?
The 3d noise function has a bug. Check line https://gist.github.com/banksean/304522#file-perlin-noise-simplex-js-L156 it calls dot() with x, y, and z arguments, yet the function only deals with x and y, not z. How should it work?
This is awesome thanks! I've been trying to understand Perlin Noise for a very long time now, and this is the simplest form of generation that I found!
I've been wondering, the fade
function, t^3*(t*(t*6.0-15.0)+10.0)
, seems to be the norm, is there any special reason why it is commonly used?
Thanks! I have been using this to create a js random terrain generator
anyone can help me how can i see the result in html? please. thankyou before
anyone can help me how can i see the result in html? please. thankyou before
https://www.17sucai.com/pins/demo-show?id=46732&st=sMlrCMBnHdAKZDuVfEjH2A&e=1725479025
@banksean Can you implement the underwater caustic effect algorithm,like this
https://opengameart.org/content/water-caustics-effect-small
Thanks for sharing! I found the Classical function to be noticeably faster than the Simplex3D while polling large numbers of points. (Chrome 28.0.1500.95)