Skip to content

Instantly share code, notes, and snippets.

@apolinario
Last active December 19, 2024 22:03
Show Gist options
  • Save apolinario/47a8503c007c5ae8494324bed9e158ce to your computer and use it in GitHub Desktop.
Save apolinario/47a8503c007c5ae8494324bed9e158ce to your computer and use it in GitHub Desktop.
Move models outside of the generation function
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from comfy import model_management
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models")
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision")
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
from nodes import NODE_CLASS_MAPPINGS
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
#To be added to `model_loaders` as it loads a model
dualcliploader_357 = dualcliploader.load_clip(
clip_name1="t5/t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
)
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
#To be added to `model_loaders` as it loads a model
vaeloader_359 = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
#To be added to `model_loaders` as it loads a model
unetloader_358 = unetloader.load_unet(
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[
"DownloadAndLoadDepthAnythingV2Model"
]()
#To be added to `model_loaders` as it loads a model
downloadandloaddepthanythingv2model_437 = (
downloadandloaddepthanythingv2model.loadmodel(
model="depth_anything_v2_vitl_fp32.safetensors"
)
)
instructpixtopixconditioning = NODE_CLASS_MAPPINGS[
"InstructPixToPixConditioning"
]()
text_multiline_454 = text_multiline.text_multiline(text="FLUX_Redux")
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
#To be added to `model_loaders` as it loads a model
clipvisionloader_438 = clipvisionloader.load_clip(
clip_name="sigclip_vision_patch14_384.safetensors"
)
clipvisionencode = NODE_CLASS_MAPPINGS["CLIPVisionEncode"]()
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
#To be added to `model_loaders` as it loads a model
stylemodelloader_441 = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
text_multiline = NODE_CLASS_MAPPINGS["Text Multiline"]()
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
cr_conditioning_input_switch = NODE_CLASS_MAPPINGS[
"CR Conditioning Input Switch"
]()
cr_model_input_switch = NODE_CLASS_MAPPINGS["CR Model Input Switch"]()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
imagecrop = NODE_CLASS_MAPPINGS["ImageCrop+"]()
#Add all the models that load a safetensors file
model_loaders = [dualcliploader_357, vaeloader_359, unetloader_358, clipvisionloader_438, stylemodelloader_441, downloadandloaddepthanythingv2model_437]
# Check which models are valid and how to best load them
valid_models = [
getattr(loader[0], 'patcher', loader[0])
for loader in model_loaders
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
]
#Finally loads the models
model_management.load_models_gpu(valid_models)
@spaces.GPU(duration=60)
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength):
import_custom_nodes()
with torch.inference_mode():
intconstant_83 = intconstant.get_value(value=1024)
intconstant_84 = intconstant.get_value(value=1024)
cr_clip_input_switch_319 = cr_clip_input_switch.switch(
Input=1,
clip1=get_value_at_index(dualcliploader_357, 0),
clip2=get_value_at_index(dualcliploader_357, 0),
)
cliptextencode_174 = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(cr_clip_input_switch_319, 0),
)
cliptextencode_175 = cliptextencode.encode(
text="purple", clip=get_value_at_index(cr_clip_input_switch_319, 0)
)
loadimage_429 = loadimage.load_image(image=structure_image)
imageresize_72 = imageresize.execute(
width=get_value_at_index(intconstant_83, 0),
height=get_value_at_index(intconstant_84, 0),
interpolation="bicubic",
method="keep proportion",
condition="always",
multiple_of=16,
image=get_value_at_index(loadimage_429, 0),
)
getimagesizeandcount_360 = getimagesizeandcount.getsize(
image=get_value_at_index(imageresize_72, 0)
)
vaeencode_197 = vaeencode.encode(
pixels=get_value_at_index(getimagesizeandcount_360, 0),
vae=get_value_at_index(vaeloader_359, 0),
)
ksamplerselect_363 = ksamplerselect.get_sampler(sampler_name="euler")
randomnoise_365 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
fluxguidance_430 = fluxguidance.append(
guidance=15, conditioning=get_value_at_index(cliptextencode_174, 0)
)
depthanything_v2_436 = depthanything_v2.process(
da_model=get_value_at_index(downloadandloaddepthanythingv2model_437, 0),
images=get_value_at_index(getimagesizeandcount_360, 0),
)
instructpixtopixconditioning_431 = instructpixtopixconditioning.encode(
positive=get_value_at_index(fluxguidance_430, 0),
negative=get_value_at_index(cliptextencode_175, 0),
vae=get_value_at_index(vaeloader_359, 0),
pixels=get_value_at_index(depthanything_v2_436, 0),
)
loadimage_440 = loadimage.load_image(image=style_image)
clipvisionencode_439 = clipvisionencode.encode(
crop="center",
clip_vision=get_value_at_index(clipvisionloader_438, 0),
image=get_value_at_index(loadimage_440, 0),
)
emptylatentimage_10 = emptylatentimage.generate(
width=get_value_at_index(imageresize_72, 1),
height=get_value_at_index(imageresize_72, 2),
batch_size=1,
)
cr_conditioning_input_switch_271 = cr_conditioning_input_switch.switch(
Input=1,
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 0),
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 0),
)
cr_conditioning_input_switch_272 = cr_conditioning_input_switch.switch(
Input=1,
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 1),
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 1),
)
cr_model_input_switch_320 = cr_model_input_switch.switch(
Input=1,
model1=get_value_at_index(unetloader_358, 0),
model2=get_value_at_index(unetloader_358, 0),
)
stylemodelapplyadvanced_442 = stylemodelapplyadvanced.apply_stylemodel(
strength=style_strength,
conditioning=get_value_at_index(instructpixtopixconditioning_431, 0),
style_model=get_value_at_index(stylemodelloader_441, 0),
clip_vision_output=get_value_at_index(clipvisionencode_439, 0),
)
basicguider_366 = basicguider.get_guider(
model=get_value_at_index(cr_model_input_switch_320, 0),
conditioning=get_value_at_index(stylemodelapplyadvanced_442, 0),
)
basicscheduler_364 = basicscheduler.get_sigmas(
scheduler="simple",
steps=28,
denoise=1,
model=get_value_at_index(cr_model_input_switch_320, 0),
)
samplercustomadvanced_362 = samplercustomadvanced.sample(
noise=get_value_at_index(randomnoise_365, 0),
guider=get_value_at_index(basicguider_366, 0),
sampler=get_value_at_index(ksamplerselect_363, 0),
sigmas=get_value_at_index(basicscheduler_364, 0),
latent_image=get_value_at_index(emptylatentimage_10, 0),
)
vaedecode_321 = vaedecode.decode(
samples=get_value_at_index(samplercustomadvanced_362, 0),
vae=get_value_at_index(vaeloader_359, 0),
)
saveimage_327 = saveimage.save_images(
filename_prefix=get_value_at_index(text_multiline_454, 0),
images=get_value_at_index(vaedecode_321, 0),
)
fluxguidance_382 = fluxguidance.append(
guidance=depth_strength,
conditioning=get_value_at_index(cr_conditioning_input_switch_272, 0),
)
imagecrop_447 = imagecrop.execute(
width=2000,
height=2000,
position="top-center",
x_offset=0,
y_offset=0,
image=get_value_at_index(loadimage_440, 0),
)
saved_path = f"output/{saveimage_327['ui']['images'][0]['filename']}"
return saved_path
if __name__ == "__main__":
# Comment out the main() call
# Start your Gradio app
with gr.Blocks() as app:
# Add a title
gr.Markdown("# FLUX Style Shaping")
with gr.Row():
with gr.Column():
# Add an input
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
# Add a `Row` to include the groups side by side
with gr.Row():
# First group includes structure image and depth strength
with gr.Group():
structure_image = gr.Image(label="Structure Image", type="filepath")
depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
# Second group includes style image and style strength
with gr.Group():
style_image = gr.Image(label="Style Image", type="filepath")
style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
# The generate button
generate_btn = gr.Button("Generate")
with gr.Column():
# The output image
output_image = gr.Image(label="Generated Image")
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs
# and the output an image
generate_btn.click(
fn=generate_image,
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
outputs=[output_image]
)
app.launch(share=True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment