Last active
August 15, 2024 03:08
-
-
Save akesling/5358964 to your computer and use it in GitHub Desktop.
MNist loading helper for Python 2.7. For Python 3.x, see https://gist.github.com/akesling/42393ccb868125071fdea77d98a0d2f0
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import struct | |
import numpy as np | |
""" | |
MNist loading helper for Python 2.7. | |
For Python 3.x, see https://gist.github.com/akesling/42393ccb868125071fdea77d98a0d2f0 | |
Loosely inspired by http://abel.ee.ucla.edu/cvxopt/_downloads/mnist.py | |
which is GPL licensed. | |
""" | |
def read(dataset = "training", path = "."): | |
""" | |
Python function for importing the MNIST data set. It returns an iterator | |
of 2-tuples with the first element being the label and the second element | |
being a numpy.uint8 2D array of pixel data for the given image. | |
""" | |
if dataset is "training": | |
fname_img = os.path.join(path, 'train-images-idx3-ubyte') | |
fname_lbl = os.path.join(path, 'train-labels-idx1-ubyte') | |
elif dataset is "testing": | |
fname_img = os.path.join(path, 't10k-images-idx3-ubyte') | |
fname_lbl = os.path.join(path, 't10k-labels-idx1-ubyte') | |
else: | |
raise ValueError, "dataset must be 'testing' or 'training'" | |
# Load everything in some numpy arrays | |
with open(fname_lbl, 'rb') as flbl: | |
magic, num = struct.unpack(">II", flbl.read(8)) | |
lbl = np.fromfile(flbl, dtype=np.int8) | |
with open(fname_img, 'rb') as fimg: | |
magic, num, rows, cols = struct.unpack(">IIII", fimg.read(16)) | |
img = np.fromfile(fimg, dtype=np.uint8).reshape(len(lbl), rows, cols) | |
get_img = lambda idx: (lbl[idx], img[idx]) | |
# Create an iterator which returns each image in turn | |
for i in xrange(len(lbl)): | |
yield get_img(i) | |
def show(image): | |
""" | |
Render a given numpy.uint8 2D array of pixel data. | |
""" | |
from matplotlib import pyplot | |
import matplotlib as mpl | |
fig = pyplot.figure() | |
ax = fig.add_subplot(1,1,1) | |
imgplot = ax.imshow(image, cmap=mpl.cm.Greys) | |
imgplot.set_interpolation('nearest') | |
ax.xaxis.set_ticks_position('top') | |
ax.yaxis.set_ticks_position('left') | |
pyplot.show() |
I got this error, who can help me? Very Thanks.
raise ValueError, "dataset must be 'testing' or 'training'"
For all those who find this and want something working on Python 3.x, I've created an updated gist: https://gist.github.com/akesling/42393ccb868125071fdea77d98a0d2f0
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
this script work well i think, for plotting right digit.
however, this is wired.
seems different loading tools(https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/mnist_loader.py) make result different for me when testing network here(https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network.py).