Skip to content

Instantly share code, notes, and snippets.

@ajay1685
Last active October 5, 2023 16:38
Show Gist options
  • Save ajay1685/b70c51373e726b7698adac56f5e721ee to your computer and use it in GitHub Desktop.
Save ajay1685/b70c51373e726b7698adac56f5e721ee to your computer and use it in GitHub Desktop.
Using pyvips to stitch component data images generated by inform
# -*- coding: utf-8 -*-
"""
This script is used for stitching the component_data.tif files generated by un-mixing workflow in inForm. This
script uses tifffile to read the metadata (Channel names & colors, spatial calibration and stage cordinates) from
input files. pyvips (libvips) is used to read the pixel data from image files and create a stitched image. The final stitched image is saved
in ome-tiff compatible format with minimal ome-xml.
Created on Wed Aug 22 15:53:08 2021
Modified on 2023-07-18: add resolution, channel names and channel colors to ome-xml. some code cleanup.
@author: Ajay Zalavadia ([email protected])
"""
import math
import os
import time
import glob
from xml.etree import ElementTree as ET
import tifffile
# Path to libvips binaries
vipshome = 'c:\\Apps\\vips-dev-8.14\\bin'
os.environ['PATH'] = vipshome + ';' + os.environ['PATH']
import pyvips
print("vips version: " + str(pyvips.version(0))+"."+str(pyvips.version(1))+"."+str(pyvips.version(2)))
imagedir= "C:\\Component-Data"
outFile = os.path.join(imagedir, 'stitched.ome.tif')
class region:
def __init__(self, XPosition, YPosition, Height, Width, filePath, XCord, YCord):
self.XPosition = XPosition # Stage position
self.YPosition = YPosition # Stage position
self.Height = Height
self.Width = Width
self.filePath = filePath
self.XCord = XCord # pixel position on the stitched image
self.YCord = YCord # pixel position on the stitched image
def get_region(filePath):
with tifffile.TiffFile(filePath) as tif:
tag_xpos = tif.pages[0].tags['XPosition']
tag_ypos = tif.pages[0].tags['YPosition']
tag_xres = tif.pages[0].tags['XResolution']
tag_yres = tif.pages[0].tags['YResolution']
xpos = 10000*tag_xpos.value[0]/tag_xpos.value[1]
xres = tag_xres.value[0]/(tag_xres.value[1]*10000)
ypos = 10000*tag_ypos.value[0]/tag_ypos.value[1]
yres = tag_yres.value[0]/(tag_yres.value[1]*10000)
height = tif.pages[0].tags['ImageLength'].value
width = tif.pages[0].tags['ImageWidth'].value
rg = region(xpos*xres, ypos*yres, height, width, filePath, xpos*xres, ypos*yres)
return rg
#collect regions
def collect_regions(imagedir):
fileList = glob.glob(imagedir + '/*component_data.tif')
region_collection=[];
for idx, file in enumerate(fileList):
region_collection.append(get_region(file))
return region_collection
#Calculate image cordinates from the stage cordinates
def zero_center_regions(region_collection):
minX = min(region.XPosition for region in region_collection)
minY = min(region.YPosition for region in region_collection)
for idx, region in enumerate(region_collection):
region.XCord = region.XPosition-minX
region.YCord = region.YPosition-minY
return region_collection
#Return the number of channels from first image
def count_channels(region_collection):
temp = pyvips.Image.new_from_file(region_collection[0].filePath, access='sequential')
channel_count = int(temp.get("n-pages"))-1 # get n-pages from 1st image, -1 for thumbnail
return channel_count
def interleaved_tile(filePath, channels):
tile = pyvips.Image.new_from_file(filePath, n=channels)
page_height = tile.get("page-height")
# chop into pages
pages = [tile.crop(0, y, tile.width, page_height) for y in range(0, tile.height, page_height)]
# join pages band-wise to make an interleaved image
tile = pages[0].bandjoin(pages[1:])
tile = tile.copy(interpretation="multiband")
return tile
#Stitch regions and return stitched image
def stitch_regions(region_collection):
channels = count_channels(region_collection)
stitched_img_size_x = int(math.ceil(max(region.XCord + region.Width for region in region_collection)))
stitched_img_size_y = int(math.ceil(max(region.YCord + region.Height for region in region_collection)))
print('Final image dimension Width: ', stitched_img_size_x, ' Height: ', stitched_img_size_y)
# create a reference image of the final size
stitched_img = pyvips.Image.black(stitched_img_size_x, stitched_img_size_y, bands=channels)
for idx, region in enumerate(region_collection):
tile = interleaved_tile(region.filePath,stitched_img.bands)
# insert tile to the reference image
stitched_img = stitched_img.insert(tile, region.XCord, region.YCord, expand=1, background=[0])
return stitched_img
def get_colors(colors):
new_colors = []
for cl in colors:
cl = str.split(cl, ',')
RGBint = int.from_bytes([int(cl[0]), int(cl[1]), int(cl[2]), 1], byteorder="big", signed=True)
new_colors.append(RGBint)
return new_colors
def channel_xml(region_collection):
img = tifffile.TiffFile(region_collection[0].filePath)
imgData_s0 = img.series[0]
names = [(ET.fromstring(page.description).find('Name').text) for page in imgData_s0]
colors = [(ET.fromstring(page.description).find('Color').text) for page in imgData_s0]
colors = get_colors(colors)
channels_xml = ('\n').join(
[f"""<Channel ID="Channel:0:{i}" Name="{channel_name}" Color="{colors[i]}" SamplesPerPixel="1"/>"""
for i, channel_name in enumerate(names)]
)
return channels_xml
def generate_ome_xml(region_collection,final_width,final_height,bands):
img = tifffile.TiffFile(region_collection[0].filePath)
tag_xres = img.series[0].pages[0].tags['XResolution']
micron_per_pixel = 1 / (tag_xres.value[0] / (tag_xres.value[1] * 10000))
CalibrationUnits = 'µm'
channel_ome_xml = channel_xml(region_collection)
ome_xml=f"""<?xml version="1.0" encoding="UTF-8"?>
<OME xmlns="http://www.openmicroscopy.org/Schemas/OME/2016-06"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openmicroscopy.org/Schemas/OME/2016-06 http://www.openmicroscopy.org/Schemas/OME/2016-06/ome.xsd">
<Image ID="Image:0">
<!-- Minimum required fields about image dimensions -->
<Pixels DimensionOrder="XYCZT"
ID="Pixels:0"
SizeC="{bands}"
SizeT="1"
SizeX="{final_width}"
SizeY="{final_height}"
SizeZ="1"
Type="float"
PhysicalSizeX="{micron_per_pixel}"
PhysicalSizeXUnit="{CalibrationUnits}"
PhysicalSizeY="{micron_per_pixel}"
PhysicalSizeYUnit="{CalibrationUnits}">
{channel_ome_xml}
</Pixels>
</Image>
</OME>"""
return ome_xml
def save_ome_tiff(stitched_img, outFile, ome_xml, compression):
height = stitched_img.height
# OME compatible image
stitched_img = pyvips.Image.arrayjoin(stitched_img.bandsplit(), across=1)
# Make a copy and set tiff tags necessary for OME-TIFF
stitched_img = stitched_img.copy()
stitched_img.set_type(pyvips.GValue.gint_type, "page-height", height)
# Include metadata as OME-XML for OME-TIFF
stitched_img.set_type(pyvips.GValue.gstr_type, "image-description", ome_xml)
stitched_img.write_to_file(outFile, compression=compression, tile=True, tile_width=512, tile_height=512, pyramid=True, subifd=True, bigtiff=True)
return 0
# Collect regions from the list of component_data.tif files
t0 = time.time()
regions = zero_center_regions(collect_regions(imagedir))
t1 = time.time()
#Stitch regions
stitched_img = stitch_regions(regions)
t2 = time.time()
# Create minimal ome-xml
ome_xml =generate_ome_xml(regions,stitched_img.width,stitched_img.height,stitched_img.bands)
# Save as ome-tiff
save_ome_tiff(stitched_img, outFile, ome_xml, "lzw")
t3= time.time()
print('Time to collect regions: ', t1-t0)
print('Time to stitch: ', t2-t1)
print('Time to save (sec): ', t3-t2)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment