Skip to content

Instantly share code, notes, and snippets.

@VSehwag
Created May 18, 2020 20:52
Show Gist options
  • Save VSehwag/688632e523df5d2a4c8008f5ee567b1c to your computer and use it in GitHub Desktop.
Save VSehwag/688632e523df5d2a4c8008f5ee567b1c to your computer and use it in GitHub Desktop.
## Make sure to first download the model_best_dense.pth.tar from https://www.dropbox.com/sh/56yyfy16elwbnr8/AADmr7bXgFkrNdoHjKWwIFKqa?dl=0
import os
import argparse
import torch
import torch.nn as nn
import torchvision.datasets as datasets
import torch.utils.data as data
import torchvision.transforms as transforms
import torch.nn.functional as F
import math
import sys
sys.path.insert(0, "..")
class BasicBlock(nn.Module):
def __init__(self, conv_layer, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = conv_layer(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = conv_layer(
out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False
)
self.droprate = dropRate
self.equalInOut = in_planes == out_planes
self.convShortcut = (
(not self.equalInOut)
and conv_layer(
in_planes,
out_planes,
kernel_size=1,
stride=stride,
padding=0,
bias=False,
)
or None
)
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
return torch.add(x if self.equalInOut else self.convShortcut(x), out)
class NetworkBlock(nn.Module):
def __init__(
self, nb_layers, in_planes, out_planes, block, conv_layer, stride, dropRate=0.0
):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(
conv_layer, block, in_planes, out_planes, nb_layers, stride, dropRate
)
def _make_layer(
self, conv_layer, block, in_planes, out_planes, nb_layers, stride, dropRate
):
layers = []
for i in range(int(nb_layers)):
layers.append(
block(
conv_layer,
i == 0 and in_planes or out_planes,
out_planes,
i == 0 and stride or 1,
dropRate,
)
)
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(
self,
conv_layer,
linear_layer,
depth=34,
num_classes=10,
widen_factor=10,
dropRate=0.0,
):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert (depth - 4) % 6 == 0
n = (depth - 4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = conv_layer(
3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False
)
# 1st block
self.block1 = NetworkBlock(
n, nChannels[0], nChannels[1], block, conv_layer, 1, dropRate
)
# 1st sub-block
self.sub_block1 = NetworkBlock(
n, nChannels[0], nChannels[1], block, conv_layer, 1, dropRate
)
# 2nd block
self.block2 = NetworkBlock(
n, nChannels[1], nChannels[2], block, conv_layer, 2, dropRate
)
# 3rd block
self.block3 = NetworkBlock(
n, nChannels[2], nChannels[3], block, conv_layer, 2, dropRate
)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = linear_layer(nChannels[3], num_classes)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, linear_layer):
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
return self.fc(out)
def wrn_28_10(**kwargs):
return WideResNet(nn.Conv2d, nn.Linear, depth=28, widen_factor=10, **kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="./data")
parser.add_argument("--norm", type=str, default="Linf")
parser.add_argument("--epsilon", type=float, default=8.0 / 255.0)
parser.add_argument("--model", type=str, default="./model_test.pt")
parser.add_argument("--n_ex", type=int, default=1000)
parser.add_argument("--individual", action="store_true")
parser.add_argument("--cheap", action="store_true")
parser.add_argument("--save_dir", type=str, default="./results")
parser.add_argument("--batch_size", type=int, default=500)
parser.add_argument("--plus", action="store_true")
args = parser.parse_args()
# load model
model = nn.DataParallel(wrn_28_10())
ckpt = torch.load(args.model, map_location="cpu")["state_dict"]
model.load_state_dict(ckpt)
model.cuda()
model.eval()
# load data
transform_list = [transforms.ToTensor()]
transform_chain = transforms.Compose(transform_list)
item = datasets.CIFAR10(
root=args.data_dir, train=False, transform=transform_chain, download=True
)
test_loader = data.DataLoader(item, batch_size=1000, shuffle=False, num_workers=0)
# create save dir
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# load attack
from autoattack import AutoAttack
adversary = AutoAttack(model, norm=args.norm, eps=args.epsilon)
l = [x for (x, y) in test_loader]
x_test = torch.cat(l, 0)
l = [y for (x, y) in test_loader]
y_test = torch.cat(l, 0)
# cheap version
if args.cheap:
adversary.cheap()
# plus version
if args.plus:
adversary.plus = True
# run attack and save images
with torch.no_grad():
if not args.individual:
adv_complete = adversary.run_standard_evaluation(
x_test[: args.n_ex], y_test[: args.n_ex], bs=args.batch_size
)
torch.save(
{"adv_complete": adv_complete},
"{}/{}_1_{}_eps_{:.5f}_plus_{}_cheap_{}.pth".format(
args.save_dir,
"aa",
adv_complete.shape[0],
args.epsilon,
args.plus,
args.cheap,
),
)
else:
# individual version, each attack is run on all test points
# specify attacks to run with
# adversary.attacks_to_run = ['apgd-ce']
adv_complete = adversary.run_standard_evaluation_individual(
x_test[: args.n_ex], y_test[: args.n_ex], bs=args.batch_size
)
torch.save(
adv_complete,
"{}/{}_individual_1_{}_eps_{:.5f}_plus_{}_cheap_{}.pth".format(
args.save_dir, "aa", args.n_ex, args.epsilon, args.plus, args.cheap
),
)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment