Skip to content

Instantly share code, notes, and snippets.

View SunnyMarkLiu's full-sized avatar
🎯
On the road to Data Science.🚗

SunnyMarkLiu SunnyMarkLiu

🎯
On the road to Data Science.🚗
View GitHub Profile
@SunnyMarkLiu
SunnyMarkLiu / waya-dl-setup.sh
Created January 21, 2019 16:11 — forked from mjdietzx/waya-dl-setup.sh
Install CUDA Toolkit v8.0 and cuDNN v6.0 on Ubuntu 16.04
#!/bin/bash
# install CUDA Toolkit v8.0
# instructions from https://developer.nvidia.com/cuda-downloads (linux -> x86_64 -> Ubuntu -> 16.04 -> deb (network))
CUDA_REPO_PKG="cuda-repo-ubuntu1604_8.0.61-1_amd64.deb"
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/${CUDA_REPO_PKG}
sudo dpkg -i ${CUDA_REPO_PKG}
sudo apt-get update
sudo apt-get -y install cuda
@SunnyMarkLiu
SunnyMarkLiu / gist:a230e660f0f9db5eacdcc4d7300f0083
Created August 8, 2017 07:05 — forked from AliMD/gist:3344523
All github Emoji (Smiles)

All github Emoji (Smiles)

ali.md/emoji

:bowtie: | 😄 | 😆 | 😊 | 😃 | ☺️ | 😏 | 😍 | 😘 | :kissing_face: | 😳 | 😌 | 😆 | 😁 | 😉 | :wink2: | 👅 | 😒 | 😅 | 😓

😩 | 😔 | 😞 | 😖 | 😨 | 😰 | 😣 | 😢 | 😭 | 😂 | 😲 | 😱 | :neckbeard: | 😫 | 😠 | 😡 | 😤 | 😪 | 😋 | 😷

😎 | 😵 | 👿 | 😈 | 😐 | 😶 | 😇 | 👽 | 💛 | 💙 | 💜 | ❤️ | 💚 | 💔 | 💓 | 💗 | 💕 | 💞 | 💘 | ✨

@SunnyMarkLiu
SunnyMarkLiu / cv2_detect.py
Created April 20, 2017 12:56 — forked from npinto/cv2_detect.py
Simple face detection with OpenCV 'cv2' python bindings from 2.4.x
import cv2
import cv2.cv as cv
def detect(img, cascade_fn='haarcascades/haarcascade_frontalface_alt.xml',
scaleFactor=1.3, minNeighbors=4, minSize=(20, 20),
flags=cv.CV_HAAR_SCALE_IMAGE):
cascade = cv2.CascadeClassifier(cascade_fn)
rects = cascade.detectMultiScale(img, scaleFactor=scaleFactor,
@SunnyMarkLiu
SunnyMarkLiu / min-char-rnn.py
Created November 23, 2016 02:11 — forked from karpathy/min-char-rnn.py
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)