-
-
Save RobinL/6e11c04aa1204ac3e7452eddd778ab4f to your computer and use it in GitHub Desktop.
disable exact match detection
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import duckdb | |
import splink.duckdb.comparison_level_library as cll | |
import splink.duckdb.comparison_library as cl | |
from splink.duckdb.linker import DuckDBLinker | |
# duckdb sql statement that creates a few rows pertaining to a few people | |
# using UNION ALL | |
sql = """ | |
SELECT '1' as unique_id, 'John' as first_name, ['a','b','c'] as test_array | |
UNION ALL | |
SELECT '2', 'Jane', ['a','e','f'] | |
UNION ALL | |
SELECT '3', 'Jack', ['a','h','i'] | |
UNION ALL | |
SELECT '4', 'Jill', ['a','k','l'] | |
UNION ALL | |
SELECT '5', 'Joe', ['a','n','o'] | |
""" | |
df_master = duckdb.sql(sql) | |
print(df_master) | |
sql = """ | |
SELECT '5' as unique_id, 'John' as first_name, ['a'] as test_array | |
UNION ALL | |
SELECT '6', 'John', ['e'] | |
UNION ALL | |
SELECT '7', 'Jane', ['e'] | |
""" | |
df_long = duckdb.sql(sql) | |
print(df_long) | |
# Derive custom tf table | |
sql = """ | |
with exploded as ( | |
select unnest(test_array) as test_array | |
from df_master | |
) | |
select [test_array] as test_array, count(*)/(select count(*) from exploded) as tf_test_array | |
from exploded | |
group by test_array | |
""" | |
__splink__df_tf_test_array = duckdb.sql(sql).df() | |
__splink__df_tf_test_array | |
comparison_test_array = { | |
"output_column_name": "test_array", | |
"comparison_levels": [ | |
cll.null_level("test_array"), | |
{ | |
"sql_condition": 'array_length(list_intersect("test_array_l", "test_array_r"))>= 1', | |
"label_for_charts": "Arrays intersect", | |
"tf_adjustment_column": "test_array", # This controls which lookup to use, it's unrelated to the exact match level | |
"tf_adjustment_weight": 1.0, | |
"disable_tf_exact_match_detection": True, # Don't look for an exact match level, use own level instead | |
}, | |
cll.else_level(), | |
], | |
"comparison_description": "arr", | |
} | |
settings = { | |
"probability_two_random_records_match": 0.01, | |
"link_type": "link_only", | |
"blocking_rules_to_generate_predictions": ["1=1"], # full cartesian product | |
"comparisons": [cl.exact_match("first_name"), comparison_test_array], | |
"retain_intermediate_calculation_columns": True, | |
} | |
linker = DuckDBLinker(["df_long", "df_master"], settings) | |
linker.register_term_frequency_lookup(__splink__df_tf_test_array, "test_array") | |
import logging | |
logging.getLogger("splink").setLevel(1) | |
linker.predict().as_pandas_dataframe() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment