Last active
April 21, 2020 16:37
-
-
Save RaphaelMeudec/95ae32c30709c8bdb53b5bd18c0a2847 to your computer and use it in GitHub Desktop.
Comparison of training time based on what you feed to the .fit method (np.array, ImageDataGenerator with different arguments, tf.data)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Performance comparison between ImageDataGenerator and tf.data.Dataset on a simple task | |
Dependencies available at https://www.github.com/sicara/tf2-evonorm | |
""" | |
import math | |
from pathlib import Path | |
import click | |
import tensorflow as tf | |
import tensorflow_addons as tfa | |
from scripts.resnet import ResnetBuilder, BATCH_NORM_NAME | |
@click.command() | |
@click.option("--dataset_name", default="cifar10", help="tf.keras dataset to use") | |
@click.option("--logdir", default="perf_logs", help="Logs directory") | |
def launch_training(dataset_name, logdir): | |
dataset_module = getattr(tf.keras.datasets, dataset_name) | |
(x_train, y_train), (x_test, y_test) = dataset_module.load_data() | |
x_train = x_train.astype("float32") / 255. | |
x_test = x_test.astype("float32") / 255. | |
y_train = tf.keras.utils.to_categorical(y_train) | |
y_test = tf.keras.utils.to_categorical(y_test) | |
input_shape = x_train.shape[1:] | |
num_classes = y_train.shape[1] | |
batch_size = 64 | |
epochs = 15 | |
data_generator_without_rotate = tf.keras.preprocessing.image.ImageDataGenerator( | |
horizontal_flip=True, | |
) | |
data_generator = tf.keras.preprocessing.image.ImageDataGenerator( | |
horizontal_flip=True, | |
rotation_range=10, | |
) | |
def random_rotation(image, rotation_range): | |
radian_rotation_range = rotation_range * math.pi / 180 | |
rotation = tf.random.uniform(shape=[], minval=-radian_rotation_range, maxval=radian_rotation_range) | |
return tfa.image.rotate(image, rotation) | |
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).cache() | |
dataset = dataset.map(lambda image, label: (tf.image.random_flip_left_right(image), label), num_parallel_calls=True) | |
dataset = dataset.map(lambda image, label: (random_rotation(image, rotation_range=10), label), num_parallel_calls=True) | |
dataset = dataset.shuffle(buffer_size=500).batch(batch_size).repeat() | |
base_path = Path(f"{logdir}") | |
np_array_path = base_path / "np.array" | |
image_data_generator_path = base_path / "ImageDataGenerator" | |
image_data_generator_without_rotate_path = base_path / "ImageDataGenerator.no_rotate" | |
tf_data_path = base_path / "tf.data" | |
model = ResnetBuilder.build_resnet_18(input_shape, num_classes, block_fn_name=BATCH_NORM_NAME) | |
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) | |
model.fit( | |
x=x_train, | |
y=y_train, | |
batch_size=batch_size, | |
steps_per_epoch=len(x_train) // batch_size, | |
validation_data=(x_test, y_test), | |
validation_steps=len(x_test) // batch_size, | |
epochs=epochs, | |
callbacks=[tf.keras.callbacks.TensorBoard(np_array_path)], | |
shuffle=True, | |
) # 3'27" on RTX | |
model = ResnetBuilder.build_resnet_18(input_shape, num_classes, block_fn_name=BATCH_NORM_NAME) | |
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) | |
model.fit( | |
data_generator_without_rotate.flow(x_train, y_train, batch_size=batch_size), | |
steps_per_epoch=len(x_train) // batch_size, | |
validation_data=(x_test, y_test), | |
validation_steps=len(x_test) // batch_size, | |
epochs=epochs, | |
callbacks=[tf.keras.callbacks.TensorBoard(image_data_generator_without_rotate_path)], | |
shuffle=True, | |
) # 3'29" on RTX | |
model = ResnetBuilder.build_resnet_18(input_shape, num_classes, block_fn_name=BATCH_NORM_NAME) | |
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) | |
model.fit( | |
data_generator.flow(x_train, y_train, batch_size=batch_size), | |
steps_per_epoch=len(x_train) // batch_size, | |
validation_data=(x_test, y_test), | |
validation_steps=len(x_test) // batch_size, | |
epochs=epochs, | |
callbacks=[tf.keras.callbacks.TensorBoard(image_data_generator_path)], | |
shuffle=True, | |
) # 4'46" on RTX | |
model = ResnetBuilder.build_resnet_18(input_shape, num_classes, block_fn_name=BATCH_NORM_NAME) | |
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) | |
model.fit( | |
dataset, | |
steps_per_epoch=len(x_train) // batch_size, | |
validation_data=tf.data.Dataset.from_tensor_slices((x_test, y_test)).cache().batch(batch_size).repeat(), | |
validation_steps=len(x_test) // batch_size, | |
epochs=epochs, | |
callbacks=[tf.keras.callbacks.TensorBoard(tf_data_path)], | |
shuffle=True, | |
) # 3'27" on RTX | |
if __name__ == "__main__": | |
launch_training() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment