Skip to content

Instantly share code, notes, and snippets.

@RaphaelMeudec
Last active May 30, 2018 17:48
Show Gist options
  • Save RaphaelMeudec/1c0ed2dbdef394d2ab854d63161487d9 to your computer and use it in GitHub Desktop.
Save RaphaelMeudec/1c0ed2dbdef394d2ab854d63161487d9 to your computer and use it in GitHub Desktop.
# Load dataset
data = load_images('./images/train', n_images)
y_train, x_train = data['B'], data['A']
# Initialize models
g = generator_model()
d = discriminator_model()
d_on_g = generator_containing_discriminator_multiple_outputs(g, d)
# Initialize optimizers
g_opt = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
d_opt = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
d_on_g_opt = Adam(lr=1E-4, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
# Compile models
d.trainable = True
d.compile(optimizer=d_opt, loss=wasserstein_loss)
d.trainable = False
loss = [perceptual_loss, wasserstein_loss]
loss_weights = [100, 1]
d_on_g.compile(optimizer=d_on_g_opt, loss=loss, loss_weights=loss_weights)
d.trainable = True
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment