Created
January 16, 2018 06:00
-
-
Save Orbifold/7efcb87042b94e289f76136fd63760e1 to your computer and use it in GitHub Desktop.
Sequence to sequence translation in Keras.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''Sequence to sequence example in Keras (character-level). | |
This script demonstrates how to implement a basic character-level | |
sequence-to-sequence model. We apply it to translating | |
short English sentences into short French sentences, | |
character-by-character. Note that it is fairly unusual to | |
do character-level machine translation, as word-level | |
models are more common in this domain. | |
# Summary of the algorithm | |
- We start with input sequences from a domain (e.g. English sentences) | |
and correspding target sequences from another domain | |
(e.g. French sentences). | |
- An encoder LSTM turns input sequences to 2 state vectors | |
(we keep the last LSTM state and discard the outputs). | |
- A decoder LSTM is trained to turn the target sequences into | |
the same sequence but offset by one timestep in the future, | |
a training process called "teacher forcing" in this context. | |
Is uses as initial state the state vectors from the encoder. | |
Effectively, the decoder learns to generate `targets[t+1...]` | |
given `targets[...t]`, conditioned on the input sequence. | |
- In inference mode, when we want to decode unknown input sequences, we: | |
- Encode the input sequence into state vectors | |
- Start with a target sequence of size 1 | |
(just the start-of-sequence character) | |
- Feed the state vectors and 1-char target sequence | |
to the decoder to produce predictions for the next character | |
- Sample the next character using these predictions | |
(we simply use argmax). | |
- Append the sampled character to the target sequence | |
- Repeat until we generate the end-of-sequence character or we | |
hit the character limit. | |
# Data download | |
English to French sentence pairs. | |
http://www.manythings.org/anki/fra-eng.zip | |
Lots of neat sentence pairs datasets can be found at: | |
http://www.manythings.org/anki/ | |
# References | |
- Sequence to Sequence Learning with Neural Networks | |
https://arxiv.org/abs/1409.3215 | |
- Learning Phrase Representations using | |
RNN Encoder-Decoder for Statistical Machine Translation | |
https://arxiv.org/abs/1406.1078 | |
''' | |
from __future__ import print_function | |
from keras.models import Model | |
from keras.layers import Input, LSTM, Dense | |
import numpy as np | |
batch_size = 64 # Batch size for training. | |
epochs = 100 # Number of epochs to train for. | |
latent_dim = 256 # Latent dimensionality of the encoding space. | |
num_samples = 10000 # Number of samples to train on. | |
# Path to the data txt file on disk. | |
data_path = 'fra-eng/fra.txt' | |
# Vectorize the data. | |
input_texts = [] | |
target_texts = [] | |
input_characters = set() | |
target_characters = set() | |
lines = open(data_path).read().split('\n') | |
for line in lines[: min(num_samples, len(lines) - 1)]: | |
input_text, target_text = line.split('\t') | |
# We use "tab" as the "start sequence" character | |
# for the targets, and "\n" as "end sequence" character. | |
target_text = '\t' + target_text + '\n' | |
input_texts.append(input_text) | |
target_texts.append(target_text) | |
for char in input_text: | |
if char not in input_characters: | |
input_characters.add(char) | |
for char in target_text: | |
if char not in target_characters: | |
target_characters.add(char) | |
input_characters = sorted(list(input_characters)) | |
target_characters = sorted(list(target_characters)) | |
num_encoder_tokens = len(input_characters) | |
num_decoder_tokens = len(target_characters) | |
max_encoder_seq_length = max([len(txt) for txt in input_texts]) | |
max_decoder_seq_length = max([len(txt) for txt in target_texts]) | |
print('Number of samples:', len(input_texts)) | |
print('Number of unique input tokens:', num_encoder_tokens) | |
print('Number of unique output tokens:', num_decoder_tokens) | |
print('Max sequence length for inputs:', max_encoder_seq_length) | |
print('Max sequence length for outputs:', max_decoder_seq_length) | |
input_token_index = dict( | |
[(char, i) for i, char in enumerate(input_characters)]) | |
target_token_index = dict( | |
[(char, i) for i, char in enumerate(target_characters)]) | |
encoder_input_data = np.zeros( | |
(len(input_texts), max_encoder_seq_length, num_encoder_tokens), | |
dtype='float32') | |
decoder_input_data = np.zeros( | |
(len(input_texts), max_decoder_seq_length, num_decoder_tokens), | |
dtype='float32') | |
decoder_target_data = np.zeros( | |
(len(input_texts), max_decoder_seq_length, num_decoder_tokens), | |
dtype='float32') | |
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): | |
for t, char in enumerate(input_text): | |
encoder_input_data[i, t, input_token_index[char]] = 1. | |
for t, char in enumerate(target_text): | |
# decoder_target_data is ahead of decoder_input_data by one timestep | |
decoder_input_data[i, t, target_token_index[char]] = 1. | |
if t > 0: | |
# decoder_target_data will be ahead by one timestep | |
# and will not include the start character. | |
decoder_target_data[i, t - 1, target_token_index[char]] = 1. | |
# Define an input sequence and process it. | |
encoder_inputs = Input(shape=(None, num_encoder_tokens)) | |
encoder = LSTM(latent_dim, return_state=True) | |
encoder_outputs, state_h, state_c = encoder(encoder_inputs) | |
# We discard `encoder_outputs` and only keep the states. | |
encoder_states = [state_h, state_c] | |
# Set up the decoder, using `encoder_states` as initial state. | |
decoder_inputs = Input(shape=(None, num_decoder_tokens)) | |
# We set up our decoder to return full output sequences, | |
# and to return internal states as well. We don't use the | |
# return states in the training model, but we will use them in inference. | |
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) | |
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, | |
initial_state=encoder_states) | |
decoder_dense = Dense(num_decoder_tokens, activation='softmax') | |
decoder_outputs = decoder_dense(decoder_outputs) | |
# Define the model that will turn | |
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data` | |
model = Model([encoder_inputs, decoder_inputs], decoder_outputs) | |
# Run training | |
model.compile(optimizer='rmsprop', loss='categorical_crossentropy') | |
model.fit([encoder_input_data, decoder_input_data], decoder_target_data, | |
batch_size=batch_size, | |
epochs=epochs, | |
validation_split=0.2) | |
# Save model | |
model.save('s2s.h5') | |
# Next: inference mode (sampling). | |
# Here's the drill: | |
# 1) encode input and retrieve initial decoder state | |
# 2) run one step of decoder with this initial state | |
# and a "start of sequence" token as target. | |
# Output will be the next target token | |
# 3) Repeat with the current target token and current states | |
# Define sampling models | |
encoder_model = Model(encoder_inputs, encoder_states) | |
decoder_state_input_h = Input(shape=(latent_dim,)) | |
decoder_state_input_c = Input(shape=(latent_dim,)) | |
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] | |
decoder_outputs, state_h, state_c = decoder_lstm( | |
decoder_inputs, initial_state=decoder_states_inputs) | |
decoder_states = [state_h, state_c] | |
decoder_outputs = decoder_dense(decoder_outputs) | |
decoder_model = Model( | |
[decoder_inputs] + decoder_states_inputs, | |
[decoder_outputs] + decoder_states) | |
# Reverse-lookup token index to decode sequences back to | |
# something readable. | |
reverse_input_char_index = dict( | |
(i, char) for char, i in input_token_index.items()) | |
reverse_target_char_index = dict( | |
(i, char) for char, i in target_token_index.items()) | |
def decode_sequence(input_seq): | |
# Encode the input as state vectors. | |
states_value = encoder_model.predict(input_seq) | |
# Generate empty target sequence of length 1. | |
target_seq = np.zeros((1, 1, num_decoder_tokens)) | |
# Populate the first character of target sequence with the start character. | |
target_seq[0, 0, target_token_index['\t']] = 1. | |
# Sampling loop for a batch of sequences | |
# (to simplify, here we assume a batch of size 1). | |
stop_condition = False | |
decoded_sentence = '' | |
while not stop_condition: | |
output_tokens, h, c = decoder_model.predict( | |
[target_seq] + states_value) | |
# Sample a token | |
sampled_token_index = np.argmax(output_tokens[0, -1, :]) | |
sampled_char = reverse_target_char_index[sampled_token_index] | |
decoded_sentence += sampled_char | |
# Exit condition: either hit max length | |
# or find stop character. | |
if (sampled_char == '\n' or | |
len(decoded_sentence) > max_decoder_seq_length): | |
stop_condition = True | |
# Update the target sequence (of length 1). | |
target_seq = np.zeros((1, 1, num_decoder_tokens)) | |
target_seq[0, 0, sampled_token_index] = 1. | |
# Update states | |
states_value = [h, c] | |
return decoded_sentence | |
for seq_index in range(100): | |
# Take one sequence (part of the training test) | |
# for trying out decoding. | |
input_seq = encoder_input_data[seq_index: seq_index + 1] | |
decoded_sentence = decode_sequence(input_seq) | |
print('-') | |
print('Input sentence:', input_texts[seq_index]) | |
print('Decoded sentence:', decoded_sentence) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment