Skip to content

Instantly share code, notes, and snippets.

@MaxOhn
Last active December 3, 2024 16:00
Show Gist options
  • Save MaxOhn/625af10011f6d7e13a171b08ccf959ff to your computer and use it in GitHub Desktop.
Save MaxOhn/625af10011f6d7e13a171b08ccf959ff to your computer and use it in GitHub Desktop.
Benchmarking osu!lazer against rosu-pp
use std::{
fs::read_to_string,
hint::black_box,
path::Path,
time::{Duration, Instant},
};
use rosu_pp::{
any::{DifficultyAttributes, PerformanceAttributes},
Beatmap, Difficulty, Performance,
};
fn main() {
// 100 random map ids
let map_ids_string = read_to_string("/path/to/map_ids.csv").unwrap();
let map_ids: Vec<u32> = map_ids_string
.split(',')
.map(str::parse)
.map(Result::unwrap)
.collect();
print!("Decoding maps: ");
let paths: Vec<_> = map_ids
.iter()
.map(|id| format!("/path/to/{id}.osu"))
.collect();
bench(decode_map, &paths);
print!("Calculating difficulties: ");
let maps: Vec<_> = paths.iter().map(decode_map).collect();
bench(calculate_difficulty, &maps);
print!("Calculating performances: ");
let attrs: Vec<_> = maps.iter().map(calculate_difficulty).collect();
bench(calculate_performance, &attrs);
}
fn decode_map(path: impl AsRef<Path>) -> Beatmap {
Beatmap::from_path(path).unwrap()
}
fn calculate_difficulty(map: &Beatmap) -> DifficultyAttributes {
Difficulty::new().calculate(map)
}
fn calculate_performance(diff_attrs: &DifficultyAttributes) -> PerformanceAttributes {
Performance::from(diff_attrs.clone()).calculate()
}
fn bench<'a, I, O>(f: impl Fn(&'a I) -> O, inputs: &'a [I]) {
const CHUNK_SIZE: usize = 10;
// Warmup
for _ in 0..CHUNK_SIZE {
for input in inputs {
let _ = black_box(f(input));
}
}
let mut chunk_times = Vec::new();
let start = Instant::now();
while start.elapsed().as_secs() < 10 {
let curr = Instant::now();
for _ in 0..CHUNK_SIZE {
for input in inputs {
let _ = black_box(f(input));
}
}
let elapsed = curr.elapsed();
chunk_times.push(elapsed / CHUNK_SIZE as u32);
}
chunk_times.sort_unstable();
let mean = chunk_times.iter().copied().sum::<Duration>() / chunk_times.len() as u32;
let median = chunk_times[chunk_times.len() / 2];
println!("Median: {median:.2?} | Mean: {mean:.2?}");
}
using osu.Game.Beatmaps;
using osu.Game.Beatmaps.Formats;
using osu.Game.Rulesets;
using osu.Game.Rulesets.Catch;
using osu.Game.Rulesets.Difficulty;
using osu.Game.Rulesets.Mania;
using osu.Game.Rulesets.Osu;
using osu.Game.Rulesets.Taiko;
using osu.Game.Scoring;
using System.Diagnostics;
namespace Bench
{
public class Program
{
static void Main()
{
Decoder.RegisterDependencies(new AssemblyRulesetStore());
// 100 random map ids
string mapIdsString = File.ReadAllText("/path/to/map_ids.csv");
var mapIds = mapIdsString.Split(',').Select(int.Parse).ToList();
Console.Write($"Decoding maps: ");
var paths = mapIds.Select(mapId => $"/path/to/{mapId}.osu").ToList();
Bench(DecodeMap, paths);
Console.Write($"Calculating difficulties: ");
var maps = paths.Select(DecodeMap).ToList();
Bench(CalculateDifficulty, maps);
Console.Write($"Calculating performances: ");
var attrs = maps.Select(map => (CreateRuleset(map.Beatmap.BeatmapInfo.Ruleset), CalculateDifficulty(map))).ToList();
Bench(CalculatePerformance, attrs);
}
static FlatWorkingBeatmap DecodeMap(string path) => new FlatWorkingBeatmap(path);
static DifficultyAttributes CalculateDifficulty(IWorkingBeatmap map)
=> CreateRuleset(map.Beatmap.BeatmapInfo.Ruleset).CreateDifficultyCalculator(map).Calculate();
static PerformanceAttributes? CalculatePerformance((Ruleset ruleset, DifficultyAttributes diffAttrs) input)
=> input.ruleset.CreatePerformanceCalculator()?.Calculate(new ScoreInfo(), input.diffAttrs);
static void Bench<I, O>(Func<I, O> f, List<I> inputs)
{
const int chunk_size = 10;
// Warmup
for (int i = 0; i < chunk_size; i++)
{
foreach (I input in inputs)
{
var _ = f(input);
}
}
var chunkTimes = new List<TimeSpan>();
var start = Stopwatch.StartNew();
while (start.Elapsed.Seconds < 10)
{
var curr = Stopwatch.StartNew();
for (int i = 0; i < chunk_size;i++)
{
foreach (I input in inputs)
{
var _ = f(input);
}
}
var elapsed = curr.Elapsed;
chunkTimes.Add(elapsed / chunk_size);
}
chunkTimes.Sort();
var mean = new TimeSpan(chunkTimes.Aggregate(0L, (sum, next) => sum + next.Ticks) / chunkTimes.Count);
var median = chunkTimes[chunkTimes.Count / 2];
Console.WriteLine($"Median: {FormatTimeSpan(mean)} | Mean: {FormatTimeSpan(median)}");
}
static Ruleset CreateRuleset(RulesetInfo info)
{
switch (info.OnlineID)
{
case 0:
return new OsuRuleset();
case 1:
return new TaikoRuleset();
case 2:
return new CatchRuleset();
case 3:
return new ManiaRuleset();
default:
throw new InvalidDataException($"invalid ruleset id {info.OnlineID}");
}
}
static string FormatTimeSpan(TimeSpan time)
{
const long ns_per_tick = 100L;
const long ticks_per_milli = 1000000L / ns_per_tick;
const long ticks_per_micro = 1000L / ns_per_tick;
if (time.Seconds > 0)
return $"{time:ss\\.ff}s";
else if (time.Ticks >= ticks_per_milli)
return $"{time.Ticks / ticks_per_milli}.{(time.Ticks % ticks_per_milli).ToString().PadRight(2, '0')[..2]}ms";
else if (time.Ticks >= ticks_per_micro)
return $"{time.Ticks / ticks_per_micro}.{(time.Ticks % ticks_per_micro).ToString().PadRight(2, '0')[..2]}µs";
else
return $"{time.Ticks * ns_per_tick}ns";
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment