Skip to content

Instantly share code, notes, and snippets.

@MarisaKirisame
Created March 8, 2020 16:51
Show Gist options
  • Save MarisaKirisame/09edade7b2ab2bef3bfb779904e3cfdb to your computer and use it in GitHub Desktop.
Save MarisaKirisame/09edade7b2ab2bef3bfb779904e3cfdb to your computer and use it in GitHub Desktop.
import math
def sin(x):
if isinstance(x, Dual):
return Dual(sin(x.x), cos(x.x) * x.dx)
return math.sin(x)
def cos(x):
if isinstance(x, Dual):
return Dual(cos(x.x), -1 * sin(x.x) * x.dx)
return math.cos(x)
class Dual:
def __init__(self, x, dx):
self.x = x
self.dx = dx
def __add__(self, r):
assert isinstance(r, Dual)
return Dual(self.x + r.x, self.dx + r.dx)
def __mul__(self, r):
if isinstance(r, Dual):
return Dual(self.x * r.x, self.x * r.dx + r.x * self.dx)
assert isinstance(r, float)
return Dual(self.x * r, r * self.dx)
def __rmul__(self, r):
return self * r
def __repr__(self):
return repr((self.x, self.dx))
class Raw:
def __mul__(self, r):
assert isinstance(r, float)
return Raw()
def __rmul__(self, r):
return self * r
def __add__(self, r):
assert isinstance(r, Raw)
return Raw()
def __repr__(self):
return repr(())
def f(x, y):
return sin(x) * y, sin(y) + x
print("raw:")
print(f(Dual(1.0, Raw()), Dual(2.0, Raw())))
print("forward mode:")
print(f(Dual(1.0, 1.0), Dual(2.0, 0.0)))
print(f(Dual(1.0, 0.0), Dual(2.0, 1.0)))
class Ref:
def __init__(self, v):
self.v = v
class WithBP:
def __init__(self, rdx, bp):
self.rdx = rdx
self.bp = bp
def __mul__(self, rhs):
assert isinstance(rhs, float)
r = Ref(0.0)
bpv = self.bp.v
def new_bp():
self.rdx.v = self.rdx.v + r.v * rhs
bpv()
self.bp.v = new_bp
return WithBP(r, self.bp)
def __rmul__(self, rhs):
return self * rhs
def __add__(self, rhs):
assert isinstance(rhs, WithBP)
r = Ref(0.0)
bpv = self.bp.v
def new_bp():
self.rdx.v = self.rdx.v + r.v
rhs.rdx.v = rhs.rdx.v + r.v
bpv()
self.bp.v = new_bp
return WithBP(r, self.bp)
print("reverse mode:")
bp = Ref(lambda: ())
x = WithBP(Ref(0.0), bp)
y = WithBP(Ref(0.0), bp)
a, b = f(Dual(1.0, x), Dual(2.0, y))
a.dx.rdx.v = 1.0
a.dx.bp.v()
print((x.rdx.v, y.rdx.v))
bp.v = lambda: ()
x = WithBP(Ref(0.0), bp)
y = WithBP(Ref(0.0), bp)
a, b = f(Dual(1.0, x), Dual(2.0, y))
b.dx.rdx.v = 1.0
bp.v()
print((x.rdx.v, y.rdx.v))
class Batched:
def __init__(self, *l):
self.l = l
def __mul__(self, rhs):
assert isinstance(rhs, float)
return Batched(*[x * rhs for x in self.l])
def __add__(self, rhs):
assert isinstance(rhs, Batched)
assert len(self.l) == len(rhs.l)
return Batched(*[self.l[i] + rhs.l[i] for i in range(len(self.l))])
def __rmul__(self, rhs):
return self * rhs
def __repr__(self):
return repr(self.l)
print("batched forward mode:")
print(f(Dual(1.0, Batched(1.0, 0.0)), Dual(2.0, Batched(0.0, 1.0))))
print("batched reverse mode:")
bp = Ref(lambda: ())
ax = WithBP(Ref(0.0), bp)
bx = WithBP(Ref(0.0), bp)
ay = WithBP(Ref(0.0), bp)
by = WithBP(Ref(0.0), bp)
a, b = f(Dual(1.0, Batched(ax, bx)), Dual(2.0, Batched(ay, by)))
a.dx.l[0].rdx.v = 1.0
b.dx.l[1].rdx.v = 1.0
bp.v()
print((ax.rdx.v, bx.rdx.v, ay.rdx.v, by.rdx.v))
@asukaminato0721
Copy link

asukaminato0721 commented Oct 18, 2021

@MarisaKirisame
Copy link
Author

@wuyudi thx for the suggestion! I would like to keep the code without special python features for simplicity however.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment