Created
May 20, 2021 17:29
-
-
Save JackTemaki/b8c23b8eba61e4951ea22561f30e54a1 to your computer and use it in GitHub Desktop.
RETURNN Parameter List
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"EnableAutoNumpySharedMemPickling" | |
"L1_reg" | |
"L2_reg" | |
"SprintInterfacePythonFeatureScorer" | |
"accum_grad_multiple_step" | |
"activation" | |
"adadelta" | |
"adagrad" | |
"adam" | |
"allow_random_model_init" | |
"analyze_dataset" | |
"batch_pruning" | |
"batch_size" | |
"batch_size_eval" | |
"batching" | |
"bias_init" | |
"bidirectional" | |
"blocks_debug_dump_output" | |
"blocks_mt_model" | |
"cache_size" | |
"calculate_exp_loss" | |
"cheating" | |
"check_learning_rates" | |
"check_unsupported_device" | |
"chunk_eval" | |
"chunking" | |
"chunking_variance" | |
"cleanup_old_models" | |
"combine_labels" | |
"compression" | |
"context_window" | |
"ctc_prior_file" | |
"custom_dev_init_code" | |
"daemon.port" | |
"data_key" | |
"dataset_pipeline" | |
"debug_SprintErrorSigOp_perform_time" | |
"debug_add_check_numerics_on_output" | |
"debug_add_check_numerics_ops" | |
"debug_batch_compute_time" | |
"debug_grad_summaries" | |
"debug_gradient_norm" | |
"debug_objective_loss_summaries" | |
"debug_output_constraints" | |
"debug_print_layer_output_shape" | |
"debug_print_layer_output_template" | |
"debug_rec_layer" | |
"debug_save_updater_vars" | |
"debug_shell_first_compute" | |
"debug_shell_in_runner" | |
"debug_shell_in_runner_step" | |
"debug_shell_model_broken" | |
"debug_unnormalized_loss_summaries" | |
"decouple_constraints" | |
"decouple_constraints_factor" | |
"default_input" | |
"deterministic_train" | |
"dev" | |
"device" | |
"device_timeout" | |
"distributed_tf" | |
"dropout" | |
"dry_run" | |
"dump_data" | |
"dump_json" | |
"dump_model_broken_info" | |
"enforce_min_len1" | |
"entropy" | |
"epoch" | |
"eval" | |
"eval_datasets" | |
"eval_output_file" | |
"eval_output_file_per_seq" | |
"eval_use_train_flag" | |
"exclude" | |
"extern_data" | |
"extra_updates" | |
"extract" | |
"extract_output_layer_name" | |
"flat_net_construction" | |
"forward_batch_size" | |
"forward_output_layer" | |
"forward_override_hdf_output" | |
"forward_use_search" | |
"forward_weights_init" | |
"get_network" | |
"global_norm_tag" | |
"grad_norm_to_clip_to_zero" | |
"gradient_clip" | |
"gradient_clip_avg_norm" | |
"gradient_clip_global_norm" | |
"gradient_clip_global_norm_tag" | |
"gradient_clip_norm" | |
"gradient_nan_inf_filter" | |
"gradient_noise" | |
"hidden_name" | |
"hidden_size" | |
"hidden_type" | |
"horovod_avg_grad" | |
"horovod_dataset_distribution" | |
"horovod_param_sync_step" | |
"horovod_param_sync_time_diff" | |
"horovod_reduce_type" | |
"horovod_scale_lr" | |
"hyper_param_tuning" | |
"import_model_train_epoch1" | |
"inc_seq_length" | |
"init_new_network_callback" | |
"init_train_epoch_posthook" | |
"initialize_from_json" | |
"initialize_from_model" | |
"ipython" | |
"label_file" | |
"learning_rate" | |
"learning_rate_control" | |
"learning_rate_control_error_measure" | |
"learning_rate_control_min_num_epochs_per_new_lr" | |
"learning_rate_control_relative_error_relative_lr" | |
"learning_rate_file" | |
"learning_rates" | |
"load" | |
"load_epoch" | |
"load_graph" | |
"log" | |
"log_batch_size" | |
"log_format" | |
"log_verbosity" | |
"loss" | |
"loss_name" | |
"max_engines" | |
"max_pad_size" | |
"max_seq_length" | |
"max_seq_length_eval" | |
"max_seqs" | |
"max_seqs_eval" | |
"maximize_grad_norm" | |
"min_chunk_size" | |
"min_learning_rate" | |
"min_seq_length" | |
"model" | |
"momentum" | |
"multiprocessing" | |
"nadam" | |
"need_data" | |
"network" | |
"newbob_error_threshold" | |
"newbob_learning_rate_decay" | |
"newbob_learning_rate_growth" | |
"newbob_multi_num_epochs" | |
"newbob_multi_update_interval" | |
"newbob_relative_error_div_by_old" | |
"newbob_relative_error_threshold" | |
"num_epochs" | |
"num_inputs" | |
"num_outputs" | |
"on_size_limit" | |
"optimize_move_layers_out" | |
"optimizer" | |
"optimizer_epsilon" | |
"optimizer_use_locking" | |
"output_file" | |
"output_per_seq_file_format" | |
"output_per_seq_format" | |
"output_precision" | |
"param_variational_noise" | |
"patch_atfork" | |
"pause_after_first_seq" | |
"port" | |
"posterior_scale" | |
"preload_from_files" | |
"pretrain" | |
"pretrain_construction_algo" | |
"pretrain_copy_output_layer" | |
"pretrain_greedy" | |
"pretrain_learning_rate" | |
"pretrain_repetitions" | |
"prior_scale" | |
"random_seed" | |
"recurrent" | |
"reduction_rate" | |
"reinit" | |
"reinit_network_each_epoch" | |
"reset_updater_vars_mod_step" | |
"rmsprop" | |
"save_epoch1_initial_model" | |
"save_graph" | |
"save_interval" | |
"search_data" | |
"search_do_eval" | |
"search_output_file" | |
"search_output_file_format" | |
"search_output_layer" | |
"search_train_network_layers" | |
"seq_drop" | |
"seq_drop_freq" | |
"seq_train_parallel" | |
"share_batches" | |
"sharpgates" | |
"shuffle_batches" | |
"shuffle_frames_of_nseqs" | |
"sil_label_idx" | |
"sparse_input" | |
"sprint_interface_custom_dataset" | |
"sprint_interface_dataset_opts" | |
"sprint_trainer_exec_path" | |
"start_batch" | |
"start_epoch" | |
"statistics" | |
"statistics_dtype" | |
"statistics_save_prefix" | |
"stop_on_nonfinite_train_score" | |
"store_metadata_mod_step" | |
"stream" | |
"substitute_param_expr" | |
"subtract_priors" | |
"target" | |
"task" | |
"test_func" | |
"test_value" | |
"testnet_share_params" | |
"tf_log_dir" | |
"tf_log_memory_usage" | |
"tf_session_opts" | |
"theano_graph.prefix" | |
"theano_graph.task" | |
"theano_on_unused_input" | |
"train" | |
"train_in_eval" | |
"truncation" | |
"update_batch_size" | |
"use_horovod" | |
"use_last_best_model" | |
"use_learning_rate_control_always" | |
"use_tensorflow" | |
"use_theano" | |
"web_server_port" | |
"wer_data" | |
"window" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment