Instantly share code, notes, and snippets.
Created
April 8, 2021 12:20
-
Star
(0)
0
You must be signed in to star a gist -
Fork
(0)
0
You must be signed in to fork a gist
-
Save GaneshSparkz/2bea34cbc804635ed5de3d88df6497d4 to your computer and use it in GitHub Desktop.
Social Network Ads dataset for Logistic Regression
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
User ID | Gender | Age | EstimatedSalary | Purchased | |
---|---|---|---|---|---|
15624510 | Male | 19 | 19000 | 0 | |
15810944 | Male | 35 | 20000 | 0 | |
15668575 | Female | 26 | 43000 | 0 | |
15603246 | Female | 27 | 57000 | 0 | |
15804002 | Male | 19 | 76000 | 0 | |
15728773 | Male | 27 | 58000 | 0 | |
15598044 | Female | 27 | 84000 | 0 | |
15694829 | Female | 32 | 150000 | 1 | |
15600575 | Male | 25 | 33000 | 0 | |
15727311 | Female | 35 | 65000 | 0 | |
15570769 | Female | 26 | 80000 | 0 | |
15606274 | Female | 26 | 52000 | 0 | |
15746139 | Male | 20 | 86000 | 0 | |
15704987 | Male | 32 | 18000 | 0 | |
15628972 | Male | 18 | 82000 | 0 | |
15697686 | Male | 29 | 80000 | 0 | |
15733883 | Male | 47 | 25000 | 1 | |
15617482 | Male | 45 | 26000 | 1 | |
15704583 | Male | 46 | 28000 | 1 | |
15621083 | Female | 48 | 29000 | 1 | |
15649487 | Male | 45 | 22000 | 1 | |
15736760 | Female | 47 | 49000 | 1 | |
15714658 | Male | 48 | 41000 | 1 | |
15599081 | Female | 45 | 22000 | 1 | |
15705113 | Male | 46 | 23000 | 1 | |
15631159 | Male | 47 | 20000 | 1 | |
15792818 | Male | 49 | 28000 | 1 | |
15633531 | Female | 47 | 30000 | 1 | |
15744529 | Male | 29 | 43000 | 0 | |
15669656 | Male | 31 | 18000 | 0 | |
15581198 | Male | 31 | 74000 | 0 | |
15729054 | Female | 27 | 137000 | 1 | |
15573452 | Female | 21 | 16000 | 0 | |
15776733 | Female | 28 | 44000 | 0 | |
15724858 | Male | 27 | 90000 | 0 | |
15713144 | Male | 35 | 27000 | 0 | |
15690188 | Female | 33 | 28000 | 0 | |
15689425 | Male | 30 | 49000 | 0 | |
15671766 | Female | 26 | 72000 | 0 | |
15782806 | Female | 27 | 31000 | 0 | |
15764419 | Female | 27 | 17000 | 0 | |
15591915 | Female | 33 | 51000 | 0 | |
15772798 | Male | 35 | 108000 | 0 | |
15792008 | Male | 30 | 15000 | 0 | |
15715541 | Female | 28 | 84000 | 0 | |
15639277 | Male | 23 | 20000 | 0 | |
15798850 | Male | 25 | 79000 | 0 | |
15776348 | Female | 27 | 54000 | 0 | |
15727696 | Male | 30 | 135000 | 1 | |
15793813 | Female | 31 | 89000 | 0 | |
15694395 | Female | 24 | 32000 | 0 | |
15764195 | Female | 18 | 44000 | 0 | |
15744919 | Female | 29 | 83000 | 0 | |
15671655 | Female | 35 | 23000 | 0 | |
15654901 | Female | 27 | 58000 | 0 | |
15649136 | Female | 24 | 55000 | 0 | |
15775562 | Female | 23 | 48000 | 0 | |
15807481 | Male | 28 | 79000 | 0 | |
15642885 | Male | 22 | 18000 | 0 | |
15789109 | Female | 32 | 117000 | 0 | |
15814004 | Male | 27 | 20000 | 0 | |
15673619 | Male | 25 | 87000 | 0 | |
15595135 | Female | 23 | 66000 | 0 | |
15583681 | Male | 32 | 120000 | 1 | |
15605000 | Female | 59 | 83000 | 0 | |
15718071 | Male | 24 | 58000 | 0 | |
15679760 | Male | 24 | 19000 | 0 | |
15654574 | Female | 23 | 82000 | 0 | |
15577178 | Female | 22 | 63000 | 0 | |
15595324 | Female | 31 | 68000 | 0 | |
15756932 | Male | 25 | 80000 | 0 | |
15726358 | Female | 24 | 27000 | 0 | |
15595228 | Female | 20 | 23000 | 0 | |
15782530 | Female | 33 | 113000 | 0 | |
15592877 | Male | 32 | 18000 | 0 | |
15651983 | Male | 34 | 112000 | 1 | |
15746737 | Male | 18 | 52000 | 0 | |
15774179 | Female | 22 | 27000 | 0 | |
15667265 | Female | 28 | 87000 | 0 | |
15655123 | Female | 26 | 17000 | 0 | |
15595917 | Male | 30 | 80000 | 0 | |
15668385 | Male | 39 | 42000 | 0 | |
15709476 | Male | 20 | 49000 | 0 | |
15711218 | Male | 35 | 88000 | 0 | |
15798659 | Female | 30 | 62000 | 0 | |
15663939 | Female | 31 | 118000 | 1 | |
15694946 | Male | 24 | 55000 | 0 | |
15631912 | Female | 28 | 85000 | 0 | |
15768816 | Male | 26 | 81000 | 0 | |
15682268 | Male | 35 | 50000 | 0 | |
15684801 | Male | 22 | 81000 | 0 | |
15636428 | Female | 30 | 116000 | 0 | |
15809823 | Male | 26 | 15000 | 0 | |
15699284 | Female | 29 | 28000 | 0 | |
15786993 | Female | 29 | 83000 | 0 | |
15709441 | Female | 35 | 44000 | 0 | |
15710257 | Female | 35 | 25000 | 0 | |
15582492 | Male | 28 | 123000 | 1 | |
15575694 | Male | 35 | 73000 | 0 | |
15756820 | Female | 28 | 37000 | 0 | |
15766289 | Male | 27 | 88000 | 0 | |
15593014 | Male | 28 | 59000 | 0 | |
15584545 | Female | 32 | 86000 | 0 | |
15675949 | Female | 33 | 149000 | 1 | |
15672091 | Female | 19 | 21000 | 0 | |
15801658 | Male | 21 | 72000 | 0 | |
15706185 | Female | 26 | 35000 | 0 | |
15789863 | Male | 27 | 89000 | 0 | |
15720943 | Male | 26 | 86000 | 0 | |
15697997 | Female | 38 | 80000 | 0 | |
15665416 | Female | 39 | 71000 | 0 | |
15660200 | Female | 37 | 71000 | 0 | |
15619653 | Male | 38 | 61000 | 0 | |
15773447 | Male | 37 | 55000 | 0 | |
15739160 | Male | 42 | 80000 | 0 | |
15689237 | Male | 40 | 57000 | 0 | |
15679297 | Male | 35 | 75000 | 0 | |
15591433 | Male | 36 | 52000 | 0 | |
15642725 | Male | 40 | 59000 | 0 | |
15701962 | Male | 41 | 59000 | 0 | |
15811613 | Female | 36 | 75000 | 0 | |
15741049 | Male | 37 | 72000 | 0 | |
15724423 | Female | 40 | 75000 | 0 | |
15574305 | Male | 35 | 53000 | 0 | |
15678168 | Female | 41 | 51000 | 0 | |
15697020 | Female | 39 | 61000 | 0 | |
15610801 | Male | 42 | 65000 | 0 | |
15745232 | Male | 26 | 32000 | 0 | |
15722758 | Male | 30 | 17000 | 0 | |
15792102 | Female | 26 | 84000 | 0 | |
15675185 | Male | 31 | 58000 | 0 | |
15801247 | Male | 33 | 31000 | 0 | |
15725660 | Male | 30 | 87000 | 0 | |
15638963 | Female | 21 | 68000 | 0 | |
15800061 | Female | 28 | 55000 | 0 | |
15578006 | Male | 23 | 63000 | 0 | |
15668504 | Female | 20 | 82000 | 0 | |
15687491 | Male | 30 | 107000 | 1 | |
15610403 | Female | 28 | 59000 | 0 | |
15741094 | Male | 19 | 25000 | 0 | |
15807909 | Male | 19 | 85000 | 0 | |
15666141 | Female | 18 | 68000 | 0 | |
15617134 | Male | 35 | 59000 | 0 | |
15783029 | Male | 30 | 89000 | 0 | |
15622833 | Female | 34 | 25000 | 0 | |
15746422 | Female | 24 | 89000 | 0 | |
15750839 | Female | 27 | 96000 | 1 | |
15749130 | Female | 41 | 30000 | 0 | |
15779862 | Male | 29 | 61000 | 0 | |
15767871 | Male | 20 | 74000 | 0 | |
15679651 | Female | 26 | 15000 | 0 | |
15576219 | Male | 41 | 45000 | 0 | |
15699247 | Male | 31 | 76000 | 0 | |
15619087 | Female | 36 | 50000 | 0 | |
15605327 | Male | 40 | 47000 | 0 | |
15610140 | Female | 31 | 15000 | 0 | |
15791174 | Male | 46 | 59000 | 0 | |
15602373 | Male | 29 | 75000 | 0 | |
15762605 | Male | 26 | 30000 | 0 | |
15598840 | Female | 32 | 135000 | 1 | |
15744279 | Male | 32 | 100000 | 1 | |
15670619 | Male | 25 | 90000 | 0 | |
15599533 | Female | 37 | 33000 | 0 | |
15757837 | Male | 35 | 38000 | 0 | |
15697574 | Female | 33 | 69000 | 0 | |
15578738 | Female | 18 | 86000 | 0 | |
15762228 | Female | 22 | 55000 | 0 | |
15614827 | Female | 35 | 71000 | 0 | |
15789815 | Male | 29 | 148000 | 1 | |
15579781 | Female | 29 | 47000 | 0 | |
15587013 | Male | 21 | 88000 | 0 | |
15570932 | Male | 34 | 115000 | 0 | |
15794661 | Female | 26 | 118000 | 0 | |
15581654 | Female | 34 | 43000 | 0 | |
15644296 | Female | 34 | 72000 | 0 | |
15614420 | Female | 23 | 28000 | 0 | |
15609653 | Female | 35 | 47000 | 0 | |
15594577 | Male | 25 | 22000 | 0 | |
15584114 | Male | 24 | 23000 | 0 | |
15673367 | Female | 31 | 34000 | 0 | |
15685576 | Male | 26 | 16000 | 0 | |
15774727 | Female | 31 | 71000 | 0 | |
15694288 | Female | 32 | 117000 | 1 | |
15603319 | Male | 33 | 43000 | 0 | |
15759066 | Female | 33 | 60000 | 0 | |
15814816 | Male | 31 | 66000 | 0 | |
15724402 | Female | 20 | 82000 | 0 | |
15571059 | Female | 33 | 41000 | 0 | |
15674206 | Male | 35 | 72000 | 0 | |
15715160 | Male | 28 | 32000 | 0 | |
15730448 | Male | 24 | 84000 | 0 | |
15662067 | Female | 19 | 26000 | 0 | |
15779581 | Male | 29 | 43000 | 0 | |
15662901 | Male | 19 | 70000 | 0 | |
15689751 | Male | 28 | 89000 | 0 | |
15667742 | Male | 34 | 43000 | 0 | |
15738448 | Female | 30 | 79000 | 0 | |
15680243 | Female | 20 | 36000 | 0 | |
15745083 | Male | 26 | 80000 | 0 | |
15708228 | Male | 35 | 22000 | 0 | |
15628523 | Male | 35 | 39000 | 0 | |
15708196 | Male | 49 | 74000 | 0 | |
15735549 | Female | 39 | 134000 | 1 | |
15809347 | Female | 41 | 71000 | 0 | |
15660866 | Female | 58 | 101000 | 1 | |
15766609 | Female | 47 | 47000 | 0 | |
15654230 | Female | 55 | 130000 | 1 | |
15794566 | Female | 52 | 114000 | 0 | |
15800890 | Female | 40 | 142000 | 1 | |
15697424 | Female | 46 | 22000 | 0 | |
15724536 | Female | 48 | 96000 | 1 | |
15735878 | Male | 52 | 150000 | 1 | |
15707596 | Female | 59 | 42000 | 0 | |
15657163 | Male | 35 | 58000 | 0 | |
15622478 | Male | 47 | 43000 | 0 | |
15779529 | Female | 60 | 108000 | 1 | |
15636023 | Male | 49 | 65000 | 0 | |
15582066 | Male | 40 | 78000 | 0 | |
15666675 | Female | 46 | 96000 | 0 | |
15732987 | Male | 59 | 143000 | 1 | |
15789432 | Female | 41 | 80000 | 0 | |
15663161 | Male | 35 | 91000 | 1 | |
15694879 | Male | 37 | 144000 | 1 | |
15593715 | Male | 60 | 102000 | 1 | |
15575002 | Female | 35 | 60000 | 0 | |
15622171 | Male | 37 | 53000 | 0 | |
15795224 | Female | 36 | 126000 | 1 | |
15685346 | Male | 56 | 133000 | 1 | |
15691808 | Female | 40 | 72000 | 0 | |
15721007 | Female | 42 | 80000 | 1 | |
15794253 | Female | 35 | 147000 | 1 | |
15694453 | Male | 39 | 42000 | 0 | |
15813113 | Male | 40 | 107000 | 1 | |
15614187 | Male | 49 | 86000 | 1 | |
15619407 | Female | 38 | 112000 | 0 | |
15646227 | Male | 46 | 79000 | 1 | |
15660541 | Male | 40 | 57000 | 0 | |
15753874 | Female | 37 | 80000 | 0 | |
15617877 | Female | 46 | 82000 | 0 | |
15772073 | Female | 53 | 143000 | 1 | |
15701537 | Male | 42 | 149000 | 1 | |
15736228 | Male | 38 | 59000 | 0 | |
15780572 | Female | 50 | 88000 | 1 | |
15769596 | Female | 56 | 104000 | 1 | |
15586996 | Female | 41 | 72000 | 0 | |
15722061 | Female | 51 | 146000 | 1 | |
15638003 | Female | 35 | 50000 | 0 | |
15775590 | Female | 57 | 122000 | 1 | |
15730688 | Male | 41 | 52000 | 0 | |
15753102 | Female | 35 | 97000 | 1 | |
15810075 | Female | 44 | 39000 | 0 | |
15723373 | Male | 37 | 52000 | 0 | |
15795298 | Female | 48 | 134000 | 1 | |
15584320 | Female | 37 | 146000 | 1 | |
15724161 | Female | 50 | 44000 | 0 | |
15750056 | Female | 52 | 90000 | 1 | |
15609637 | Female | 41 | 72000 | 0 | |
15794493 | Male | 40 | 57000 | 0 | |
15569641 | Female | 58 | 95000 | 1 | |
15815236 | Female | 45 | 131000 | 1 | |
15811177 | Female | 35 | 77000 | 0 | |
15680587 | Male | 36 | 144000 | 1 | |
15672821 | Female | 55 | 125000 | 1 | |
15767681 | Female | 35 | 72000 | 0 | |
15600379 | Male | 48 | 90000 | 1 | |
15801336 | Female | 42 | 108000 | 1 | |
15721592 | Male | 40 | 75000 | 0 | |
15581282 | Male | 37 | 74000 | 0 | |
15746203 | Female | 47 | 144000 | 1 | |
15583137 | Male | 40 | 61000 | 0 | |
15680752 | Female | 43 | 133000 | 0 | |
15688172 | Female | 59 | 76000 | 1 | |
15791373 | Male | 60 | 42000 | 1 | |
15589449 | Male | 39 | 106000 | 1 | |
15692819 | Female | 57 | 26000 | 1 | |
15727467 | Male | 57 | 74000 | 1 | |
15734312 | Male | 38 | 71000 | 0 | |
15764604 | Male | 49 | 88000 | 1 | |
15613014 | Female | 52 | 38000 | 1 | |
15759684 | Female | 50 | 36000 | 1 | |
15609669 | Female | 59 | 88000 | 1 | |
15685536 | Male | 35 | 61000 | 0 | |
15750447 | Male | 37 | 70000 | 1 | |
15663249 | Female | 52 | 21000 | 1 | |
15638646 | Male | 48 | 141000 | 0 | |
15734161 | Female | 37 | 93000 | 1 | |
15631070 | Female | 37 | 62000 | 0 | |
15761950 | Female | 48 | 138000 | 1 | |
15649668 | Male | 41 | 79000 | 0 | |
15713912 | Female | 37 | 78000 | 1 | |
15586757 | Male | 39 | 134000 | 1 | |
15596522 | Male | 49 | 89000 | 1 | |
15625395 | Male | 55 | 39000 | 1 | |
15760570 | Male | 37 | 77000 | 0 | |
15566689 | Female | 35 | 57000 | 0 | |
15725794 | Female | 36 | 63000 | 0 | |
15673539 | Male | 42 | 73000 | 1 | |
15705298 | Female | 43 | 112000 | 1 | |
15675791 | Male | 45 | 79000 | 0 | |
15747043 | Male | 46 | 117000 | 1 | |
15736397 | Female | 58 | 38000 | 1 | |
15678201 | Male | 48 | 74000 | 1 | |
15720745 | Female | 37 | 137000 | 1 | |
15637593 | Male | 37 | 79000 | 1 | |
15598070 | Female | 40 | 60000 | 0 | |
15787550 | Male | 42 | 54000 | 0 | |
15603942 | Female | 51 | 134000 | 0 | |
15733973 | Female | 47 | 113000 | 1 | |
15596761 | Male | 36 | 125000 | 1 | |
15652400 | Female | 38 | 50000 | 0 | |
15717893 | Female | 42 | 70000 | 0 | |
15622585 | Male | 39 | 96000 | 1 | |
15733964 | Female | 38 | 50000 | 0 | |
15753861 | Female | 49 | 141000 | 1 | |
15747097 | Female | 39 | 79000 | 0 | |
15594762 | Female | 39 | 75000 | 1 | |
15667417 | Female | 54 | 104000 | 1 | |
15684861 | Male | 35 | 55000 | 0 | |
15742204 | Male | 45 | 32000 | 1 | |
15623502 | Male | 36 | 60000 | 0 | |
15774872 | Female | 52 | 138000 | 1 | |
15611191 | Female | 53 | 82000 | 1 | |
15674331 | Male | 41 | 52000 | 0 | |
15619465 | Female | 48 | 30000 | 1 | |
15575247 | Female | 48 | 131000 | 1 | |
15695679 | Female | 41 | 60000 | 0 | |
15713463 | Male | 41 | 72000 | 0 | |
15785170 | Female | 42 | 75000 | 0 | |
15796351 | Male | 36 | 118000 | 1 | |
15639576 | Female | 47 | 107000 | 1 | |
15693264 | Male | 38 | 51000 | 0 | |
15589715 | Female | 48 | 119000 | 1 | |
15769902 | Male | 42 | 65000 | 0 | |
15587177 | Male | 40 | 65000 | 0 | |
15814553 | Male | 57 | 60000 | 1 | |
15601550 | Female | 36 | 54000 | 0 | |
15664907 | Male | 58 | 144000 | 1 | |
15612465 | Male | 35 | 79000 | 0 | |
15810800 | Female | 38 | 55000 | 0 | |
15665760 | Male | 39 | 122000 | 1 | |
15588080 | Female | 53 | 104000 | 1 | |
15776844 | Male | 35 | 75000 | 0 | |
15717560 | Female | 38 | 65000 | 0 | |
15629739 | Female | 47 | 51000 | 1 | |
15729908 | Male | 47 | 105000 | 1 | |
15716781 | Female | 41 | 63000 | 0 | |
15646936 | Male | 53 | 72000 | 1 | |
15768151 | Female | 54 | 108000 | 1 | |
15579212 | Male | 39 | 77000 | 0 | |
15721835 | Male | 38 | 61000 | 0 | |
15800515 | Female | 38 | 113000 | 1 | |
15591279 | Male | 37 | 75000 | 0 | |
15587419 | Female | 42 | 90000 | 1 | |
15750335 | Female | 37 | 57000 | 0 | |
15699619 | Male | 36 | 99000 | 1 | |
15606472 | Male | 60 | 34000 | 1 | |
15778368 | Male | 54 | 70000 | 1 | |
15671387 | Female | 41 | 72000 | 0 | |
15573926 | Male | 40 | 71000 | 1 | |
15709183 | Male | 42 | 54000 | 0 | |
15577514 | Male | 43 | 129000 | 1 | |
15778830 | Female | 53 | 34000 | 1 | |
15768072 | Female | 47 | 50000 | 1 | |
15768293 | Female | 42 | 79000 | 0 | |
15654456 | Male | 42 | 104000 | 1 | |
15807525 | Female | 59 | 29000 | 1 | |
15574372 | Female | 58 | 47000 | 1 | |
15671249 | Male | 46 | 88000 | 1 | |
15779744 | Male | 38 | 71000 | 0 | |
15624755 | Female | 54 | 26000 | 1 | |
15611430 | Female | 60 | 46000 | 1 | |
15774744 | Male | 60 | 83000 | 1 | |
15629885 | Female | 39 | 73000 | 0 | |
15708791 | Male | 59 | 130000 | 1 | |
15793890 | Female | 37 | 80000 | 0 | |
15646091 | Female | 46 | 32000 | 1 | |
15596984 | Female | 46 | 74000 | 0 | |
15800215 | Female | 42 | 53000 | 0 | |
15577806 | Male | 41 | 87000 | 1 | |
15749381 | Female | 58 | 23000 | 1 | |
15683758 | Male | 42 | 64000 | 0 | |
15670615 | Male | 48 | 33000 | 1 | |
15715622 | Female | 44 | 139000 | 1 | |
15707634 | Male | 49 | 28000 | 1 | |
15806901 | Female | 57 | 33000 | 1 | |
15775335 | Male | 56 | 60000 | 1 | |
15724150 | Female | 49 | 39000 | 1 | |
15627220 | Male | 39 | 71000 | 0 | |
15672330 | Male | 47 | 34000 | 1 | |
15668521 | Female | 48 | 35000 | 1 | |
15807837 | Male | 48 | 33000 | 1 | |
15592570 | Male | 47 | 23000 | 1 | |
15748589 | Female | 45 | 45000 | 1 | |
15635893 | Male | 60 | 42000 | 1 | |
15757632 | Female | 39 | 59000 | 0 | |
15691863 | Female | 46 | 41000 | 1 | |
15706071 | Male | 51 | 23000 | 1 | |
15654296 | Female | 50 | 20000 | 1 | |
15755018 | Male | 36 | 33000 | 0 | |
15594041 | Female | 49 | 36000 | 1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment