-
-
Save DawnyWu/0c5681e74f156fcc9fbfbc75bff945b3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
from torch.autograd import Variable | |
import torch.nn.functional as F | |
class RNN(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size, n_layers=1): | |
super(RNN, self).__init__() | |
self.input_size = input_size | |
self.hidden_size = hidden_size | |
self.output_size = output_size | |
self.n_layers = n_layers | |
self.c1 = nn.Conv1d(input_size, hidden_size, 2) | |
self.p1 = nn.AvgPool1d(2) | |
self.c2 = nn.Conv1d(hidden_size, hidden_size, 1) | |
self.p2 = nn.AvgPool1d(2) | |
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=0.01) | |
self.out = nn.Linear(hidden_size, output_size) | |
def forward(self, inputs, hidden): | |
batch_size = inputs.size(1) | |
# Turn (seq_len x batch_size x input_size) into (batch_size x input_size x seq_len) for CNN | |
inputs = inputs.transpose(0, 1).transpose(1, 2) | |
# Run through Conv1d and Pool1d layers | |
c = self.c1(inputs) | |
p = self.p1(c) | |
c = self.c2(p) | |
p = self.p2(c) | |
# Turn (batch_size x hidden_size x seq_len) back into (seq_len x batch_size x hidden_size) for RNN | |
p = p.transpose(1, 2).transpose(0, 1) | |
p = F.tanh(p) | |
output, hidden = self.gru(p, hidden) | |
conv_seq_len = output.size(0) | |
output = output.view(conv_seq_len * batch_size, self.hidden_size) # Treating (conv_seq_len x batch_size) as batch_size for linear layer | |
output = F.tanh(self.out(output)) | |
output = output.view(conv_seq_len, -1, self.output_size) | |
return output, hidden | |
input_size = 20 | |
hidden_size = 50 | |
output_size = 7 | |
batch_size = 5 | |
n_layers = 2 | |
seq_len = 15 | |
rnn = RNN(input_size, hidden_size, output_size, n_layers=n_layers) | |
inputs = Variable(torch.rand(seq_len, batch_size, input_size)) # seq_len x batch_size x | |
outputs, hidden = rnn(inputs, None) | |
print('outputs', outputs.size()) # conv_seq_len x batch_size x output_size | |
print('hidden', hidden.size()) # n_layers x batch_size x hidden_size |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment