Skip to content

Instantly share code, notes, and snippets.

@Blaisorblade
Forked from vlj/ring2.v
Created April 1, 2020 21:45
Show Gist options
  • Save Blaisorblade/c2328aec35357ed52a77a98dc6f6ddeb to your computer and use it in GitHub Desktop.
Save Blaisorblade/c2328aec35357ed52a77a98dc6f6ddeb to your computer and use it in GitHub Desktop.
From mathcomp Require Import ssreflect ssrnat eqtype ssrbool ssrnum ssralg.
Require Import Ring.
Open Scope ring_scope.
Import GRing.Theory.
Variable R: numFieldType.
Definition rt :
@ring_theory R 0%:R 1%:R +%R *%R (fun a b => a - b) -%R eq.
Proof.
apply mk_rt.
apply add0r.
apply addrC.
apply addrA.
apply mul1r.
apply mulrC.
apply mulrA.
apply mulrDl.
by [].
apply subrr.
Qed.
Add Ring Ringgg : rt.
Lemma tmp2:
forall x y z:R, x + y = y + x.
Proof.
move => x y z.
Unset Printing Notations.
Fail ring_simplify.
Qed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment