Last active
June 14, 2023 13:54
-
-
Save maxrohleder/61b0e01c5dc8b46e30e9b08013a22bba to your computer and use it in GitHub Desktop.
losses for biomedical image segmentation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
class DiceBCELoss(tf.keras.losses.Loss): | |
def __init__(self, roi, smooth=1e-6, eps=1e-8, name='DiceBCE'): | |
""" A more stable surrogate for the dice metric | |
Sources: | |
[1] https://github.com/Project-MONAI/MONAI/issues/807 | |
[2] https://www.kaggle.com/bigironsphere/loss-function-library-keras-pytorch | |
Args: | |
roi: bool mask same size as y_pred and y_true | |
smooth: stability term added to denominator | |
eps: prevents devision by zero | |
name: name of the operation | |
""" | |
super(DiceBCELoss, self).__init__(name=name) | |
assert roi.dtype == bool | |
self.roi = tf.convert_to_tensor(roi) | |
self.smooth, self.eps = smooth, eps | |
self.bce = tf.keras.losses.BinaryCrossentropy(from_logits=False) # no-logits -> probabilites | |
def call(self, y_true, y_pred): | |
# applying roi mask to exclude truncated area from loss | |
y_true = tf.where(self.roi, tf.cast(y_true, tf.float32), 0) # crop to roi | |
y_pred = tf.where(self.roi, tf.cast(y_pred, tf.float32), 0) | |
# calculating dice | |
intersection = tf.reduce_sum(y_pred * y_true) # A n B | |
union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) # A + B | |
dice = (2 * intersection) / (union + self.smooth + self.eps) # removed the smooth term in numerator [1] | |
dice_loss = 1 - tf.clip_by_value(dice, self.eps, 1-self.eps) | |
# calculating BCE | |
BCE = self.bce(y_true, y_pred) | |
return dice_loss + BCE |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
class SoftDiceLossRoi(tf.keras.losses.Loss): | |
def __init__(self, roi, smooth=1e-4, eps=1e-8, name='SoftDiceRoi'): | |
super(SoftDiceLossRoi, self).__init__(name=name) | |
assert roi.dtype == bool | |
self.roi = tf.convert_to_tensor(roi) | |
self.smooth, self.eps = smooth, eps | |
def call(self, y_true, y_pred): | |
y_true = tf.where(self.roi, tf.cast(y_true, tf.float32), 0) # crop gt to roi | |
y_pred = tf.where(self.roi, tf.cast(y_pred, tf.float32), 0) | |
intersection = tf.reduce_sum(y_pred * y_true) # A n B | |
union = tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) # A + B | |
dice = (2 * intersection + self.smooth) / (union + self.smooth + self.eps) | |
return 1 - tf.clip_by_value(dice, self.eps, 1-self.eps) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment